455
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Progress in the Development and Evaluation of Rain and Solid Particle Erosion Resistant Coatings for Leading Edge Protection of Wind Turbine Blades

, , , , &
Pages 639-689 | Received 08 May 2023, Accepted 07 Oct 2023, Published online: 09 Nov 2023

References

  • IRENA. Global Energy Transformation: A Roadmap to 2050; International Renewable Energy Agency: Abu Dhabi, 2019.
  • Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Rev. 2019, 24, 38–50. DOI: 10.1016/j.esr.2019.01.006.
  • KPMG. Global Trends in Renewable Energy. KPMG: Singapore, 2016.
  • Global Wind Energy Council. Global Wind Report 2022. https://gwec.net/global-wind-report-2022 (accessed Jul 31, 2023).
  • Verma, A. S.; Di Noi, S.; Ren, Z.; Jiang, Z.; Teuwen, J. J. E. Minimum Leading Edge Protection Application Length to Combat Rain-Induced Erosion of Wind Turbine Blades. Energies 2021, 14, 1629. DOI: 10.3390/en14061629.
  • Liebreich, M. London Summit 2017. Bloomberg New Energy Finance, September 19, 2017. https://data.bloomberglp.com/professional/sites/24/2017/09/BNEF-Summit-London-2017-Michael-Liebreich-State-of-the-Industry.pdf (accessed Jul 31, 2023).
  • Boopathi, K.; Mishnaevsky, L. Jr.; Sumantraa, B.; Premkumar, S. A.; Thamodharan, K.; Balaraman, K. Failure Mechanisms of Wind Turbine Blades in India: Climatic, Regional, and Seasonal Variability. Wind Energy 2022, 25, 968–979. DOI: 10.1002/we.2706.
  • Bartolomé, L.; Teuwen, J. Prospective Challenges in the Experimentation of the Rain Erosion on the Leading Edge of Wind Turbine Blades. Wind Energy 2019, 22, 140–151. DOI: 10.1002/we.2272.
  • Mishnaevsky, L. Jr.; Hasager, C. B.; Bak, C.; Tilg, A.-M.; Bech, J. I.; Rad, S. D.; Fæster, S. Leading Edge Erosion of Wind Turbine Blades: Understanding, Prevention and Protection. Renew. Energy 2021, 169, 953–969. DOI: 10.1016/j.renene.2021.01.044.
  • Ibrahim, M. E.; Medraj, M. Water Droplet Erosion of Wind Turbine Blades: Mechanics, Testing, Modeling and Future Perspectives. Materials 2020, 13, 157. DOI: 10.3390/ma13010157.
  • Herring, R.; Dyer, K.; Martin, F.; Ward, C. The Increasing Importance of Leading Edge Erosion and a Review of Existing Protection Solutions. Renew. Sustain. Energy Rev. 2019, 115, 109382. DOI: 10.1016/j.rser.2019.109382.
  • Sareen, A.; Sapre, C. A.; Selig, M. S. Effects of Leading Edge Erosion on Wind Turbine Blade Performance. Wind Energy 2014, 17, 1531–1542. DOI: 10.1002/we.1649.
  • Prakash, O.; Glivin, G.; Kalaiselvan, N.; Mariappan, V. A Strategic Study on the Environmental Impacts of Wind Turbine Blade Materials, Their Improvements, Economics and End-Life-Options. Energy Res. J. 2020, 11, 36–44. DOI: 10.3844/erjsp.2020.36.44.
  • Katsaprakakis, D.; Papadakis, N.; Ntintakis, I. A Comprehensive Analysis of Wind Turbine Blade Damage. Energies 2021, 14, 5974. DOI: 10.3390/en14185974.
  • Mishnaevsky, L. Jr.; Thomsen, K. Costs of Repair of Wind Turbine Blades: Influence of Technology Aspects. Wind Energy 2020, 23, 2247–2255. DOI: 10.1002/we.2552.
  • Mishnaevsky, L. Jr. Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview. Materials 2022, 15, 2959. DOI: 10.3390/ma15092959.
  • Tang, M.; Huang, L.; Wang, J.; Guan, D. Research Progress of Blade Coatings in Wind Turbines. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 542, 012061. DOI: 10.1088/1757-899X/542/1/012061.
  • Keegan, M. H.; Nash, D. H.; Stack, M. M. On Erosion Issues Associated with the Leading Edge of Wind Turbine Blades. J. Phys. D: Appl. Phys. 2013, 46, 383001. DOI: 10.1088/0022-3727/46/38/383001.
  • Dalili, N.; Edrisy, A.; Carriveau, R. A Review of Surface Engineering Issues Critical to Wind Turbine Performance. Renew. Sustain. Energy Rev. 2009, 13, 428–438. DOI: 10.1016/j.rser.2007.11.009.
  • Krishnan, K. G.; Milionis, A.; Tetteh, F.; Loth, E. Fruit Fly Impact on an Aerodynamic Surface: Types of Outcomes and Residue Components. Aerosp. Sci. Technol. 2017, 69, 181–192. DOI: 10.1016/j.ast.2017.06.006.
  • Sareen, A.; Sapre, C. A.; Selig, M. S. Effects of Leading-Edge Protection Tape on Wind Turbine Blade Performance. Wind Eng. 2012, 36, 525–534. DOI: 10.1260/0309-524X.36.5.525.
  • He, J.; Tian, H.; Yang, K.; Jie, J.; Chen, B.; Shu, Z.; Bao, J.; Pu, M. Study on Lubrication-Photothermal Synergistic Deicing of CNT Coating on Wind Turbine Blades. Int. J. Photoenergy 2022, 2022, 6094360. DOI: 10.1155/2022/6094360.
  • Li, L.; Khodakarami, S.; Yan, X.; Rabbi, K. F.; Gunay, A. A.; Stillwell, A.; Miljkovic, N. Enabling Renewable Energy Technologies in Harsh Climates with Ultra-Efficient Electro-Thermal Desnowing, Defrosting, and Deicing. Adv. Funct. Mater. 2022, 32, 2201521. DOI: 10.1002/adfm.202201521.
  • Wei, K.; Yang, Y.; Zuo, H.; Zhong, D. A Review on Ice Detection Technology and Ice Elimination Technology for Wind Turbine. Wind Energy 2020, 23, 433–457. DOI: 10.1002/we.2427.
  • Wood, R. J. K.; Lu, P. Leading Edge Topography of Blades–A Critical Review. Surf. Topogr.: Metrol. Prop. 2021, 9, 023001. DOI: 10.1088/2051-672X/abf81f.
  • Sagol, E.; Reggio, M.; Ilinca, A. Issues concerning Roughness on Wind Turbine Blades. Renew. Sustain. Energy Rev. 2013, 23, 514–525. DOI: 10.1016/j.rser.2013.02.034.
  • Gaudern, N. A Practical Study of the Aerodynamic Impact of Wind Turbine Blade Leading Edge Erosion. J. Phys.: Conf. Ser. 2014, 524, 012031. DOI: 10.1088/1742-6596/524/1/012031.
  • Dashtkar, A.; Hadavinia, H.; Sahinkaya, M. N.; Williams, N. A.; Vahid, S.; Ismail, F.; Turner, M. Rain Erosion-Resistant Coatings for Wind Turbine Blades: A Review. Polym. Polym. Compos. 2019, 27, 443–475. DOI: 10.1177/0967391119848232.
  • O'Carroll, A.; Hardiman, M.; Tobin, E. F.; Young, T. M. Correlation of the Rain Erosion Performance of Polymers to Mechanical and Surface Properties Measured Using Nanoindentation. Wear 2018, 412–413, 38–48. DOI: 10.1016/j.wear.2018.07.008.
  • Chen, J.; Wang, J.; Ni, A. A Review on Rain Erosion Protection of Wind Turbine Blades. J. Coat. Technol. Res. 2019, 16, 15–24. DOI: 10.1007/s11998-018-0134-8.
  • Cortés, E.; Sánchez, F.; O’Carroll, A.; Madramany, B.; Hardiman, M.; Young, T. M. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating–Laminate Adhesion on Rain Erosion Performance. Materials 2017, 10, 1146. DOI: 10.3390/ma10101146.
  • Karmouch, R.; Ross, G. G. Superhydrophobic Wind Turbine Blade Surfaces Obtained by a Simple Deposition of Silica Nanoparticles Embedded in Epoxy. Appl. Surf. Sci. 2010, 257, 665–669. DOI: 10.1016/j.apsusc.2010.07.041.
  • Domenech, L.; García-Peñas, V.; Šakalytė, A.; Francis, D. P.; Skoglund, E.; Sánchez, F. Top Coating Anti-Erosion Performance Analysis in Wind Turbine Blades Depending on Relative Acoustic Impedance. Part 2: Material Characterization and Rain Erosion Testing Evaluation. Coatings 2020, 10, 709. DOI: 10.3390/coatings10080709.
  • Zhang, S.; Dam-Johansen, K.; Bernad, P. L. Jr.; Kiil, S. Rain Erosion of Wind Turbine Blade Coatings Using Discrete Water Jets: Effects of Water Cushioning, Substrate Geometry, Impact Distance, and Coating Properties. Wear 2015, 328–329, 140–148. DOI: 10.1016/j.wear.2015.01.079.
  • Mishnaevsky, L. Jr. Toolbox for Optimizing Anti-Erosion Protective Coatings of Wind Turbine Blades: Overview of Mechanisms and Technical Solutions. Wind Energy 2019, 22, 1636–1653. DOI: 10.1002/we.2378.
  • Zhang, Z.; Ma, L.; Liu, Y.; Ren, J.; Hu, H. An Experimental Study of Rain Erosion Effects on a Hydro-/Ice-Phobic Coating Pertinent to Unmanned-Arial-System (UAS) Inflight Icing Mitigation. Cold Reg. Sci. Technol. 2021, 181, 103196. DOI: 10.1016/j.coldregions.2020.103196.
  • Zhang, S.; Dam-Johansen, K.; Nørkjær, S.; Bernad, P. L. Jr.; Kiil, S. Erosion of Wind Turbine Blade Coatings – Design and Analysis of Jet-Based Laboratory Equipment for Performance Evaluation. Prog. Org. Coat. 2015, 78, 103–115. DOI: 10.1016/j.porgcoat.2014.09.016.
  • Field, J. E. Liquid Impact: Theory, Experiment, Applications. Wear 1999, 233–235, 1–12. DOI: 10.1016/S0043-1648(99)00189-1
  • Hand, R. J.; Field, J. E.; Townsend, D. The Use of Liquid Jets to Simulate Angled Drop Impact. J. Appl. Phys. 1991, 70, 7111–7118. DOI: 10.1063/1.349793.
  • Obara, T.; Bourne, N. K.; Field, J. E. Liquid-Jet Impact on Liquid and Solid Surfaces. Wear 1995, 186–187, 388–394. DOI: 10.1016/0043-1648(95)07187-3.
  • Gohardani, O. Impact of Erosion Testing Aspects on Current and Future Flight Conditions. Prog. Aerosp. Sci. 2011, 47, 280–303. DOI: 10.1016/j.paerosci.2011.04.001.
  • Gohardani, O.; Williamson, D. M.; Hammond, D. W. Multiple Liquid Impacts on Polymeric Matrix Composites Reinforced with Carbon Nanotubes. Wear 2012, 294–295, 336–346. DOI: 10.1016/j.wear.2012.07.007.
  • Seward, C. R.; Coad, E. J.; Pickles, C. S. J.; Field, J. E. The Liquid Impact Resistance of a Range of IR-Transparent Materials. Wear 1995, 186–187, 375–383. DOI: 10.1016/0043-1648(95)07150-4.
  • Tobin, E. F.; Young, T. M.; Raps, D.; Rohr, O. Comparison of Liquid Impingement Results from Whirling Arm and Water-Jet Rain Erosion Test Facilities. Wear 2011, 271, 2625–2631. DOI: 10.1016/j.wear.2011.02.023.
  • Tobin, E. F.; Rohr, O.; Raps, D.; Willemse, W.; Norman, P.; Young, T. M. Surface Topography Parameters as a Correlation Factor for Liquid Droplet Erosion Test Facilities. Wear 2015, 328–329, 318–328. DOI: 10.1016/j.wear.2015.02.054.
  • Bech, J. I.; Johansen, N. F.-J.; Madsen, M. B.; Hannesdóttir, Á.; Hasager, C. B. Experimental Study on the Effect of Drop Size in Rain Erosion Test and on Lifetime Prediction of Wind Turbine Blades. Renew. Energy 2022, 197, 776–789. DOI: 10.1016/j.renene.2022.06.127.
  • Fraisse, A.; Bech, J. I.; Borum, K. K.; Fedorov, V.; Johansen, N. F.-J.; McGugan, M.; Mishnaevsky, L. Jr.; Kusano, Y. Impact Fatigue Damage of Coated Glass Fibre Reinforced Polymer Laminate. Renew. Energy 2018, 126, 1102–1112. DOI: 10.1016/j.renene.2018.04.043.
  • Johansen, N. F.-J.; Mishnaevsky, L. Jr.; Dashtkar, A.; Williams, N. A.; Fæster, S.; Silvello, A.; Cano, I. G.; Hadavinia, H. Nanoengineered Graphene-Reinforced Coating for Leading Edge Protection of Wind Turbine Blades. Coatings 2021, 11, 1104. DOI: 10.3390/coatings11091104.
  • DNV-GL. Testing of Rotor Blade Erosion Protection Systems; Tech Rep February; DNV-GL, Oslo, 2018.
  • Mishnaevsky, L. Jr.; Fæster, S.; Mikkelsen, L. P.; Kusano, Y.; Bech, J. I. Micromechanisms of Leading Edge Erosion of Wind Turbine Blades: X-Ray Tomography Analysis and Computational Studies. Wind Energy 2020, 23, 547–562. DOI: 10.1002/we.2441.
  • Nash, D.; Leishman, G.; Mackie, C.; Dyer, K.; Yang, L. A Staged Approach to Erosion Analysis of Wind Turbine Blade Coatings. Coatings 2021, 11, 681. DOI: 10.3390/coatings11060681.
  • Hoksbergen, T. H.; Baran, I.; Akkerman, R. Rain Droplet Erosion Behavior of a Thermoplastic Based Leading Edge Protection System for Wind Turbine Blades. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 942, 012023. DOI: 10.1088/1757-899X/942/1/012023.
  • Liang, F.; Gou, J.; Kapat, J.; Gu, H.; Song, G. Multifunctional Nanocomposite Coating for Wind Turbine Blades. Int. J. Smart Nano Mater. 2011, 2, 120–133. DOI: 10.1080/19475411.2011.592867.
  • Katsivalis, I.; Chanteli, A.; Finnegan, W.; Young, T. M. Mechanical and Interfacial Characterisation of Leading-Edge Protection Materials for Wind Turbine Blade Applications. Wind Energy 2022, 25, 1758–1774. DOI: 10.1002/we.2767.
  • Dashtkar, A.; Johansen, N. F.-J.; Mishnaevsky, L. Jr.; Williams, N. A.; Hasan, S. W.; Wadi, V. S.; Silvello, A.; Hadavinia, H. Graphene/Sol–Gel Modified Polyurethane Coating for Wind Turbine Blade Leading Edge Protection: Properties and Performance. Polym. Polym. Compos. 2022, 30, 1–18. DOI: 10.1177/09673911221074197.
  • Finnegan, W.; Flanagan, M.; Coistealbha, R. Ó.; Keeryadath, P. D.; Meier, P.; Hung, L. C.; Flanagan, T.; Goggins, J. A Novel Solution for Preventing Leading Edge Erosion in Wind Turbine Blades. J. Struct. Integr. Maint. 2021, 6, 136–147. DOI: 10.1080/24705314.2021.1906091.
  • Ouachan, I.; Kuball, M.; Liu, D.; Dyer, K.; Ward, C.; Hamerton, I. Understanding of Leading-Edge Protection Performance Using Nano-Silicates for Modification. J. Phys.: Conf. Ser. 2019, 1222, 012016. DOI: 10.1088/1742-6596/1222/1/012016.
  • Kuthe, N.; Mahajan, P.; Ahmad, S.; Mishnaevsky, L. Jr. Engineered anti-Erosion Coating for Wind Turbine Blade Protection: Computational Analysis. Mater. Today Commun. 2022, 31, 103362. DOI: 10.1016/j.mtcomm.2022.103362.
  • Fang, J.; Hu, W.; Liu, Z.; Chen, W.; Tan, J.; Jiang, Z.; Verma, A. S. Wind Turbine Rotor Speed Design Optimization considering Rain Erosion Based on Deep Reinforcement Learning. Renew. Sustain. Energy Rev. 2022, 168, 112788. DOI: 10.1016/j.rser.2022.112788.
  • Castorrini, A.; Venturini, P.; Bonfiglioli, A. Generation of Surface Maps of Erosion Resistance for Wind Turbine Blades under Rain Flows. Energies 2022, 15, 5593. DOI: 10.3390/en15155593.
  • Verma, A. S.; Castro, S. G. P.; Jiang, Z.; Teuwen, J. J. E. Numerical Investigation of Rain Droplet Impact on Offshore Wind Turbine Blades Under Different Rainfall Conditions: A Parametric Study. Compos. Struct. 2020, 241, 112096. DOI: 10.1016/j.compstruct.2020.112096.
  • Doagou-Rad, S.; Mishnaevsky, L. Jr. Rain Erosion of Wind Turbine Blades: Computational Analysis of Parameters Controlling the Surface Degradation. Meccanica 2020, 55, 725–743. DOI: 10.1007/s11012-019-01089-x.
  • Jespersen, K. M.; Monastyreckis, G.; Mishnaevsky, L. Jr. On the Potential of Particle Engineered Anti-Erosion Coatings for Leading Edge Protection of Wind Turbine Blades: Computational Studies. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 942, 012027. DOI: 10.1088/1757-899X/942/1/012027.
  • Law, H.; Koutsos, V. Leading Edge Erosion of Wind Turbines: Effect of Solid Airborne Particles and Rain on Operational Wind Farms. Wind Energy 2020, 23, 1955–1965. DOI: 10.1002/we.2540.
  • Slot, H. M.; Gelinck, E. R. M.; Rentrop, C.; van der Heide, E. Leading Edge Erosion of Coated Wind Turbine Blades: Review of Coating Life Models. Renew. Energy 2015, 80, 837–848. DOI: 10.1016/j.renene.2015.02.036.
  • Finnegan, W.; Keeryadath, P. D.; Coistealbha, R. Ó.; Flanagan, T.; Flanagan, M.; Goggins, J. Development of a Numerical Model of a Novel Leading Edge Protection Component for Wind Turbine Blades. Wind Energy Sci. 2020, 5, 1567–1577. DOI: 10.5194/wes-5-1567-2020.
  • Hoksbergen, N.; Akkerman, R.; Baran, I. The Springer Model for Lifetime Prediction of Wind Turbine Blade Leading Edge Protection Systems: A Review and Sensitivity Study. Materials 2022, 15, 1170. DOI: 10.3390/ma15031170.
  • Hu, W.; Chen, W.; Wang, X.; Jiang, Z.; Wang, Y.; Verma, A. S.; Teuwen, J. J. E. A Computational Framework for Coating Fatigue Analysis of Wind Turbine Blades Due to Rain Erosion. Renew. Energy 2021, 170, 236–250. DOI: 10.1016/j.renene.2021.01.094.
  • Verma, A. S.; Jiang, Z.; Caboni, M.; Verhoef, H.; van der Mijle Meijer, H.; Castro, S. G. P.; Teuwen, J. J. E. A Probabilistic Rainfall Model to Estimate the Leading-Edge Lifetime of Wind Turbine Blade Coating System. Renew. Energy 2021, 178, 1435–1455. DOI: 10.1016/j.renene.2021.06.122.
  • Verma, A. S.; Jiang, Z.; Ren, Z.; Caboni, M.; Verhoef, H.; van der Mijle‐Meijer, H.; Castro, S. G. P.; Teuwen, J. J. E. A Probabilistic Long-Term Framework for Site-Specific Erosion Analysis of Wind Turbine Blades: A Case Study of 31 Dutch Sites. Wind Energy 2021, 24, 1315–1336. DOI: 10.1002/we.2634.
  • Herring, R.; Domenech, L.; Renau, J.; Šakalytė, A.; Ward, C.; Dyer, K.; Sánchez, F. Assessment of a Wind Turbine Blade Erosion Lifetime Prediction Model with Industrial Protection Materials and Testing Methods. Coatings 2021, 11, 767. DOI: 10.3390/coatings11070767.
  • Verma, A. S.; Jiang, Z.; Ren, Z.; Hu, W.; Teuwen, J. J. E. Effects of Onshore and Offshore Environmental Parameters on the Leading Edge Erosion of Wind Turbine Blades: A Comparative Study. J. Offshore Mech. Arct. Eng. 2021, 143, 042001. DOI: 10.1115/1.4049248
  • Domenech, L.; Renau, J.; Šakalytė, A.; Sánchez, F. Top Coating Anti-Erosion Performance Analysis in Wind Turbine Blades Depending on Relative Acoustic Impedance. Part 1: Modelling Approach. Coatings 2020, 10, 685. DOI: 10.3390/coatings10070685.
  • Mishnaevsky, L. Jr.; Sütterlin, J. Micromechanical Model of Surface Erosion of Polyurethane Coatings on Wind Turbine Blades. Polym. Degrad. Stab. 2019, 166, 283–289. DOI: 10.1016/j.polymdegradstab.2019.06.009.
  • Bech, J. I.; Hasager, C. B.; Bak, C. Extending the Life of Wind Turbine Blade Leading Edges by Reducing the Tip Speed during Extreme Precipitation Events. Wind Energy Sci. 2018, 3, 729–748. DOI: 10.5194/wes-3-729-2018.
  • Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, T. E. Computational Analysis of Wind-Turbine Blade Rain Erosion. Comput. Fluids 2016, 141, 175–183. DOI: 10.1016/j.compfluid.2016.08.013.
  • Global Wind Atlas. Wind Atlas of India. https://globalwindatlas.info/area/India (accessed Jul 31, 2023).
  • Bousser, E.; Martinu, L.; Klemberg-Sapieha, J. E. Solid Particle Erosion Mechanisms of Protective Coatings for Aerospace Applications. Surf. Coat. Technol. 2014, 257, 165–181. DOI: 10.1016/j.surfcoat.2014.08.037.
  • Barkoula, N.-M.; Karger-Kocsis, J. Processes and Influencing Parameters of the Solid Particle Erosion of Polymers and Their Composites. J. Mater. Sci. 2002, 37, 3807–3820. DOI: 10.1023/A:1019633515481.
  • Haugen, K.; Kvernvold, O.; Ronold, A.; Sandberg, R. Sand Erosion of Wear-Resistant Materials: Erosion in Choke Valves. Wear 1995, 186–187, 179–188. DOI: 10.1016/0043-1648(95)07158-X.
  • Finnie, I. The Mechanism of Erosion of Ductile Metals. Proceedings of the 3rd US National Congress of Applied Mechanics, 1958; pp 527–532.
  • Finnie, I. Some Reflections on the Past and Future of Erosion. Wear 1995, 186–187, 1–10. DOI: 10.1016/0043-1648(95)07188-1.
  • Finnie, I.; Stevick, G. R.; Ridgely, J. R. The Influence of Impingement Angle on the Erosion of Ductile Metals by Angular Abrasive Particles. Wear 1992, 152, 91–98. DOI: 10.1016/0043-1648(92)90206-N.
  • Hutchings, I. M. Tribology: Friction and Wear of Engineering Materials; CRC Press: London, 1992.
  • Tilly, G. P. A Two Stage Mechanism of Ductile Erosion. Wear 1973, 23, 87–96. DOI: 10.1016/0043-1648(73)90044-6.
  • Bellman, R. Jr.; Levy, A. Erosion Mechanism in Ductile Metals. Wear 1981, 70, 1–27. DOI: 10.1016/0043-1648(81)90268-4.
  • Levy, A. V. The Solid Particle Erosion Behavior of Steel as a Function of Microstructure. Wear 1981, 68, 269–287. DOI: 10.1016/0043-1648(81)90177-0.
  • Cook, R. F.; Pharr, G. M. Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics. J. Am. Ceram. Soc. 1990, 73, 787–817. DOI: 10.1111/j.1151-2916.1990.tb05119.x.
  • Kleis, I.; Kulu, P. Solid Particle Erosion: Occurrence, Prediction and Control; Springer: London, 2008.
  • Bonu, V.; Jeevitha, M.; Kumar, V. P.; Barshilia, H. C. Nanolayered Multilayer Ti/TiN Coatings: Role of Bi-Layer Thickness and Annealing on Solid Particle Erosion Behaviour at Elevated Temperature. Surf. Coat. Technol. 2019, 357, 204–211. DOI: 10.1016/j.surfcoat.2018.10.007.
  • Pathak, S. M.; Kumar, V. P.; Bonu, V.; Mishnaevsky, L. Jr.; Lakshmi, R. V.; Bera, P.; Barshilia, H. C. Development of Cellulose-Reinforced Polyurethane Coatings: A Novel Eco-Friendly Approach for Wind Turbine Blade Protection. Energies 2023, 16, 1730. DOI: 10.3390/en16041730.
  • Gupta, R. K.; Kumar, A.; Kumer, A. Fundamentals of Polymers, International ed.; McGraw Hill: Singapore, 1988.
  • Pathak, S. M.; Kumar, V. P.; Bonu, V.; Latha, S.; Mishnaevsky, L. Jr.; Lakshmi, R. V.; Bera, P.; Barshilia, H. C. Solid Particle Erosion Studies of Ceramic Oxides Reinforced Water-Based PU Nanocomposite Coatings for Wind Turbine Blade Protection. Ceram. Int. 2022, 48, 35788–35798. DOI: 10.1016/j.ceramint.2022.07.143.
  • Alajmi, A. F.; Ramulu, M. Solid Particle Erosion of Graphene-Based Coatings. Wear 2021, 476, 203686. DOI: 10.1016/j.wear.2021.203686.
  • Godfrey, M.; Siederer, O.; Zekonyte, J.; Barbaros, I.; Wood, R. The Effect of Temperature on the Erosion of Polyurethane Coatings for Wind Turbine Leading Edge Protection. Wear 2021, 476, 203720. DOI: 10.1016/j.wear.2021.203720.
  • Liu, G.-Y.; Cen, H.-T.; Zeng, Q.; Tian, W.-L.; Li, L. Erosion Mechanism and Simulation Analysis of Wind Turbine Blade Coating. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, 2019; pp. 1036–1040. DOI: 10.1109/ICMCCE48743.2019.00231.
  • Mishra, P.; Acharya, S. K. Solid Particle Erosion of Bagasse Fiber Reinforced Epoxy Composite. Int. J. Phys. Sci. 2010, 5, 109–115. DOI: 10.5897/IJPS.9000510
  • Mantry, S.; Satapathy, A.; Jha, A. K.; Singh, S. K.; Patnaik, A. Preparation, Characterization and Erosion Response of Jute-Epoxy Composites Reinforced with SiC Derived from Rice Husk. Int. J. Plast. Technol. 2011, 15, 69–76. DOI: 10.1007/s12588-011-9007-z.
  • Gupta, A.; Kumar, A.; Patnaik, A.; Biswas, S. Effect of Filler Content and Alkalization on Mechanical and Erosion Wear Behavior of CBPD Filled Bamboo Fiber Composites. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 149–157. DOI: 10.4236/jsemat.2012.23024.
  • Rout, A. K.; Satapathy, A. Study on Mechanical and Tribo-Performance of Rice-Husk Filled Glass–Epoxy Hybrid Composites. Mater. Des. 2012, 41, 131–141. DOI: 10.1016/j.matdes.2012.05.002.
  • Padhi, P. K.; Satapathy, A. Prediction and Simulation of Erosion Wear Behavior of Glass-Epoxy Composites Filled with Blast Furnace Slag. Adv. Mater. Res. 2012, 585, 549–553. DOI: 10.4028/www.scientific.net/AMR.585.549.
  • Mohan, N.; Mahesha, C. R.; Rajaprakash, B. M. Erosive Wear Behaviour of WC Filled Glass Epoxy Composites. Procedia Eng. 2013, 68, 694–702. DOI: 10.1016/j.proeng.2013.12.241.
  • Mohanta, N.; Acharya, S. K. Mechanical and Tribological Performance of Luffa Cylindrical Fibre-Reinforced Epoxy Composite. Bioresources 2015, 10, 8364–8377. DOI: 10.15376/biores.10.4.8364-8377.
  • Rout, A. K.; Satapathy, A. Study on Mechanical and Erosion Wear Performance of Granite Filled Glass-Epoxy Hybrid Composites. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 2015, 229, 38–50. DOI: 10.1177/1464420713499483.
  • Bagci, M.; Imrek, H. Erosion Wear Performance of Borax Filled Novel Hybrid Composites by Using the Taguchi Experimental Design. Ind. Lubr. Tribol. 2016, 68, 134–140. DOI: 10.1108/ILT-01-2015-0007.
  • Das, G.; Biswas, S. Erosion Wear Behavior of Coir Fiber-Reinforced Epoxy Composites Filled with Al2O3 Filler. J. Ind. Text. 2017, 47, 472–488. DOI: 10.1177/1528083716652832.
  • Ray, S.; Rout, A. K.; Sahoo, A. K. A Study on Tribological Behavior of Glass-Epoxy Composite Filled with Granite Dust. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 225, 012097. DOI: 10.1088/1757-899X/225/1/012097.
  • Ramadan, N.; Taha, I.; Hammouda, R.; Abdellatif, M. H. Behaviour of Hybrid SiC/Jute Epoxy Composites Manufactured by Vacuum Assisted Resin Infusion. Polym. Polym. Compos. 2017, 25, 333–344. DOI: 10.1177/096739111702500503.
  • Purohit, A.; Satapathy, A. Processing, Characterization, and Parametric Analysis of Erosion Behavior of Epoxy-LD Sludge Composites Using Taguchi Technique and Response Surface Method. Polym. Compos. 2018, 39, E2283–E2297. DOI: 10.1002/pc.24610
  • Om Prakash, M.; Raghavendra, G.; Panchal, M.; Ojha, S.; Reddy, B. A. Effects of Environmental Exposure on Tribological Properties of Arhar Particulate/Epoxy Composites. Polym. Compos. 2018, 39, 3102–3109. DOI: 10.1002/pc.24316.
  • Latha, P. S.; Rao, M. V. Investigation into Effect of Ceramic Fillers on Mechanical and Tribological Properties of Bamboo-Glass Hybrid Fiber Reinforced Polymer Composites. Silicon 2018, 10, 1543–1550. DOI: 10.1007/s12633-017-9637-7.
  • Jena, H.; Pradhan, A. K.; Pandit, M. K. Study of Solid Particle Erosion Wear Behavior of Bamboo Fiber Reinforced Polymer Composite with Cenosphere Filler. Adv. Polym. Technol. 2018, 37, 761–769. DOI: 10.1002/adv.21718.
  • Panchal, M.; Raghavendra, G.; Om Prakash, M.; Ojha, S. Effects of Environmental Conditions on Erosion Wear of Eggshell Particulate Epoxy Composites. Silicon 2018, 10, 627–634. DOI: 10.1007/s12633-016-9505-x.
  • Singh, T.; Tejyan, S.; Patnaik, A.; Singh, V.; Zsoldos, I.; Fekete, G. Fabrication of Waste Bagasse Fiber-Reinforced Epoxy Composites: Study of Physical, Mechanical, and Erosion Properties. Polym. Compos. 2019, 40, 3777–3786. DOI: 10.1002/pc.25239.
  • Arani, N. H.; Rabba, W.; Papini, M. Solid Particle Erosion of Epoxy Matrix Composites Reinforced by Al2O3 Spheres. Tribol. Int. 2019, 136, 432–445. DOI: 10.1016/j.triboint.2019.04.010.
  • Pati, P. R.; Satpathy, M. P. Investigation on Red Brick Dust Filled Epoxy Composites Using Ant Lion Optimization Approach. Polym. Compos. 2019, 40, 3877–3885. DOI: 10.1002/pc.25246.
  • Deep, N.; Mishra, P. Study and Optimization of Erosive Behavior of Carbon Black–Epoxy Polymer Composites Using Taguchi Method. In Innovation in Materials Science and Engineering; Chattopadhyay, J., Singh, R., Prakash, O., Eds. Springer: Singapore, 2019; pp 209–217.
  • Rani, P. H. U.; Rajaprakash, B. M.; Mohan, N.; Prasad, M. A. Study on Thermal and Erosive Wear Behaviour of Hard Powders Filled Glass-Epoxy Composite. Mater. Today Proc. 2020, 27, 2011–2016. DOI: 10.1016/j.matpr.2019.09.049.
  • Pani, B.; Chandrasekhar, P.; Singh, S. Investigation of Erosion Behaviour of an Iron-Mud Filled Glass-Fibre Epoxy Hybrid Composite. Bull. Mater. Sci. 2019, 42, 217. DOI: 10.1007/s12034-019-1894-1.
  • Kukshal, V.; Sharma, A.; Kiragi, V. R.; Patnaik, A.; Patnaik, T. K. Erosive Wear Behaviour of Carbon Fiber/Silicon Nitride Polymer Composite for Automotive Application. In Automotive Tribology Energy, Environment, and Sustainability, 5th ed.; Katiyar, J., Bhattacharya, S., Patel, V., Kumar, V., Eds. Springer: Singapore, 2019; pp 117–129.
  • Choudhary, M.; Singh, T.; Dwivedi, M.; Patnaik, A. Waste Marble Dust-Filled Glass Fiber-Reinforced Polymer Composite Part I: Physical, Thermomechanical, and Erosive Wear Properties. Polym. Compos. 2019, 40, 4113–4124. DOI: 10.1002/pc.25272.
  • Öztürk, B.; Gedikli, H.; Kılıçarslan, Y. S. Erosive Wear Characteristics of E-Glass Fiber Reinforced Silica Fume and Zinc Oxide-Filled Epoxy Resin Composites. Polym. Compos. 2020, 41, 326–337. DOI: 10.1002/pc.25372.
  • Bagci, M.; Demirci, M.; Sukur, E. F.; Kaybal, H. B. The Effect of Nanoclay Particles on the Incubation Period in Solid Particle Erosion of Glass Fibre/Epoxy Nanocomposites. Wear 2020, 444–445, 203159. DOI: 10.1016/j.wear.2019.203159.
  • Pradhan, S.; Acharya, S. K. Solid particle erosive wear behaviour of eulaliopsis binata fiber reinforced epoxy composite. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 2021, 235, 830–841. DOI: 10.1177/1350650120931645.
  • LM Wind Power. The ProBlade Ultra–An Innovative Leading Edge Protection. https://www.lmwindpower.com/en/services/the-problade-ultra (accessed Jul 31, 2023).
  • 3M. 3M Wind Blade Protection Coating W4600 Series. https://www.3m.com/3M/en_US/p/d/b00040388 (accessed Jul 31, 2023).
  • Duromar. WE-9300 Leading Edge Protection. http://www.duromar.com/we-9300 (accessed Jul 31, 2023).
  • Bergolin. Wind Power Coatings: Rotor Blade Repair. https://en.bergolin.de/rotorblatt-reparatur (accessed Jul 31, 2023).
  • Belzona. Belzona 1341. https://www.belzona.com/en/products/1000/1341.aspx (accessed Jul 31, 2023).
  • Belzona. Belzona 5721. https://www.belzona.com/en/products/5000/5721.aspx (accessed Jul 31, 2023).
  • Wind, E. V. Hempel Launches Its First Leading Edge Protection Coating for Wind Blades. https://www.evwind.es/2022/09/20/hempel-launches-its-first-leading-edge-protection-coating-for-wind-blades/87885 (accessed Jul 31, 2023).
  • TEKNOS. Teknos Coating Solutions for Wind Turbine Blades. https://www.teknos.com/en-in/industrial-coatings/solutions/energy/wind-turbine-solutions/wind-turbine-manufacturing/wind-turbine-blades (accessed Jul 31, 2023).
  • AEROX. Polymer Solutions for Wind Turbine Rotor Blades. https://www.aerox.es/products (accessed Jul 31, 2023).
  • International. RELEST Wind LEP ETU-I374-6735. https://www.international-pc.com/products/relest-wind-lep-etu-i374-6735#:∼:text=RELEST%20Wind%20LEP%20ETU%20is,particles%20suspended%20in%20the%20air (accessed Jul 31, 2023).
  • ALEXIT BladeRep. LEP 10. https://www.bladerep.com/en/products/leading-edge-protection/lep-10-new (accessed Jul 31, 2023).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.