453
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Thermosetting Polymer Modified Asphalts: Current Status and Challenges

, &
Pages 690-759 | Received 31 Jul 2023, Accepted 13 Nov 2023, Published online: 30 Nov 2023

References

  • Asphalt Institute; Eurobitume. The Bitumen Industry – a Global Perspective: Production, Chemistry, Use, Specification and Occupational Exposure; Asphalt Institute: Lexington, KY, USA; EruoBitume: Brussels, Belgium, 2015.
  • Xiao, Y.; Chang, X.; Yan, B.; Zhang, X.; Yunusa, M.; Yu, R.; Chen, Z. “SBS morphology characteristics in Asphalt binder and their relation with viscoelastic properties”. Constr. Build. Mater 2021, 301, 124292. DOI: 10.1016/j.conbuildmat.2021.124292.
  • Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. “Developments of nano materials and technologies on asphalt materials – a review”. Constr. Build. Mater 2017, 143, 633–648. DOI: 10.1016/j.conbuildmat.2017.03.158.
  • Xu, F.; Zhao, Y.; Li, K. “Using waste plastics as asphalt modifier: a review”. Materials 2021, 15, 110. DOI: 10.3390/ma15010110.
  • Luo, D.; Khater, A.; Yue, Y.; Abdelsalam, M.; Zhang, Z.; Li, Y.; Li, J.; Iseley, D. T. “The performance of asphalt mixtures modified with lignin fiber and glass fiber: a review”. Constr. Build. Mater 2019, 209, 377–387. DOI: 10.1016/j.conbuildmat.2019.03.126.
  • Li, Y.; Hao, P.; Zhao, C.; Ling, J.; Wu, T.; Li, D.; Liu, J.; Sun, B. “Anti-rutting performance evaluation of modified asphalt binders: a review”. J. Traffic Transp. Eng. (Engl. Ed) 2021, 8, 339–355. DOI: 10.1016/j.jtte.2021.02.002.
  • Yue, Y.; Abdelsalam, M.; Luo, D.; Khater, A.; Musanyufu, J.; Chen, T. “Evaluation of the properties of asphalt mixes modified with diatomite and Lignin fiber: a review”. Materials 2019, 12, 400. DOI: 10.3390/ma12030400.
  • Jamshidi, A.; Hamzah, M. O.; You, Z. “Performance of warm mix Asphalt containing Sasobit®: state-of-the-art”. Constr. Build. Mater 2013, 38, 530–553. DOI: 10.1016/j.conbuildmat.2012.08.015.
  • Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. “A review of the fundamentals of polymer-modified asphalts: asphalt/polymer interactions and principles of compatibility”. Adv. Colloid Interface Sci 2015, 224, 72–112. DOI: 10.1016/j.cis.2015.07.010.
  • PlasticsEurope. Plastics—The Facts 2022. Analysis of European Latest Plastics Production, Demand and Waste Data; PlasticsEurope. Brussels, Belgium, 2022.
  • Zhu, J.; Birgisson, B.; Kringos, N. “Polymer modification of bitumen: advances and challenges”. Eur. Polym. J. 2014, 54, 18–38. DOI: 10.1016/j.eurpolymj.2014.02.005.
  • Yildirim, Y. “Polymer modified asphalt binders”. Constr. Build. Mater 2007, 21, 66–72. DOI: 10.1016/j.conbuildmat.2005.07.007.
  • Behnood, A.; Modiri Gharehveran, M. “Morphology, rheology, and physical properties of polymer-modified Asphalt binders”. Eur. Polym. J 2019, 112, 766–791. DOI: 10.1016/j.eurpolymj.2018.10.049.
  • Kalantar, Z. N.; Karim, M. R.; Mahrez, A. “A review of using waste and virgin polymer in pavement”. Constr. Build. Mater 2012, 33, 55–62. DOI: 10.1016/j.conbuildmat.2012.01.009.
  • Isacsson, U.; Lu, X. “Testing and appraisal of polymer modified road bitumens—state of the art”. Mater. Struct 1995, 28, 139–159. DOI: 10.1007/BF02473221.
  • Picado-Santos, L. G.; Capitão, S. D.; Neves, J. M. C. “Crumb rubber asphalt mixtures: a literature review”. Constr. Build. Mater 2020, 247, 118577. DOI: 10.1016/j.conbuildmat.2020.118577.
  • Horie, K.; Barón, M.; Fox, R. B.; He, J.; Hess, M.; Kahovec, J.; Kitayama, T.; Kubisa, P.; Maréchal, E.; Mormann, W.; et al. “Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC Recommendations 2003)”. Pure Appl. Chem 2004, 76, 889–906. DOI: 10.1351/pac200476040889.
  • Pascault, J.-P.; Sautereau, H.; Verdu, J.; Williams, R. J. J. Thermosetting Polymers; Marcel Dekker: New York, NY, USA, 2002.
  • Dodiuk, H. Handbook of Thermoset Plastics (4th ed.); William Andrew: Oxford, UK, 2021.
  • Guo, Q. Thermosets (2nd ed.); Elsevier: Amsterdam, Netherlands, 2018.
  • Chen, Y.; Hossiney, N.; Yang, X.; Wang, H.; You, Z. “Application of epoxy-asphalt composite in asphalt paving industry: a review with emphasis on physicochemical properties and pavement performances”. Adv. Mater. Sci. Eng 2021, 2021, 3454029.
  • Sun, J.; Luo, S.; Huang, W.; Li, Y. “Reducing epoxy resin content in a thermosetting epoxy asphalt mixture: a feasible method to facilitate application”. J. Mater. Civ. Eng 2023, 35, 04023352. DOI: 10.1061/JMCEE7.MTENG-15938.
  • Jin, F.-L.; Li, X.; Park, S.-J. “Synthesis and application of epoxy resins: a review”. J. Ind. Eng. Chem 2015, 29, 1–11. DOI: 10.1016/j.jiec.2015.03.026.
  • Das, A.; Mahanwar, P. “A brief discussion on advances in polyurethane applications”. Adv. Ind. Eng. Polym. Res 2020, 3, 93–101. DOI: 10.1016/j.aiepr.2020.07.002.
  • Zhang, R.; Huang, W.; Lyu, P.; Yan, S.; Wang, X.; Ju, J. “Polyurea for blast and impact protection: a review”. Polymers (Basel) 2022, 14, 2670. DOI: 10.3390/polym14132670.
  • Thomas, S.; Hosur, M.; Chirayil, C. J. Unsaturated Polyester Resins: Fundamentals, Design, Fabrication, and Applications; Elsevier: Amsterdam, Netherlands, 2019.
  • Penczek, P.; Czub, P.; Pielichowski, J. Unsaturated polyester resins: chemistry and technology., In Crosslinking in Materials Science; Abe, A., Dusˇek, K. and Kobayashi, S. Eds.; Springer Berlin, Heidelberg: Berlin, Germany, 2005 pp. 1–95
  • Irfan, M. H. Chemistry and Technology of Thermosetting Polymers in Construction Applications; Springer Science & Business Media: Dordrecht, Netherlands, 1998.
  • Jaswal, S.; Gaur, B. “New trends in vinyl ester resins”. Rev. Chem. Eng 2014, 30, 567–581. DOI: 10.1515/revce-2014-0012.
  • Xu, Y.; Guo, L.; Zhang, H.; Zhai, H.; Ren, H. “Research status, industrial application demand and prospects of phenolic resin”. RSC Adv 2019, 9, 28924–28935. DOI: 10.1039/c9ra06487g.
  • Wibowo, E. S.; Park, B.-D.; Causin, V. “Recent advances in urea–formaldehyde resins: converting crystalline thermosetting polymers back to amorphous ones”. Polym. Rev 2022, 62, 722–756. DOI: 10.1080/15583724.2021.2014520.
  • Dorieh, A.; Farajollah Pour, M.; Ghafari Movahed, S.; Pizzi, A.; Pouresmaeel Selakjani, P.; Valizadeh Kiamahalleh, M.; Hatefnia, H.; Shahavi, M. H.; Aghaei, R. “A review of recent progress in melamine-formaldehyde resin based nanocomposites as coating materials”. Prog. Org. Coat 2022, 165, 106768. DOI: 10.1016/j.porgcoat.2022.106768.
  • Karlinskii, B. Y.; Ananikov, V. P. “Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass”. Chem. Soc. Rev 2023, 52, 836–862. DOI: 10.1039/d2cs00773h.
  • Ratna, D. Handbook of Thermoset Resins; iSmithers Shawbury, UK, 2009.
  • Yagci, Y.; Kiskan, B.; Ghosh, N. N. “Recent advancement on polybenzoxazine—a newly developed high performance thermoset”. J. Polym. Sci. A Polym. Chem 2009, 47, 5565–5576. DOI: 10.1002/pola.23597.
  • Ishida, H.; Froimowicz, P. Advanced and Emerging Polybenzoxazine Science and Technology; Elsevier: Amsterdam, Netherlands, 2017.
  • Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. “Advanced polyimide materials: syntheses, physical properties and applications”. Prog. Polym. Sci 2012, 37, 907–974. DOI: 10.1016/j.progpolymsci.2012.02.005.
  • Hamerton, I. Chemistry and Technology of Cyanate Ester Resins; Springer Science & Business Media: Dordrecht, Netherlands, 2012.
  • Anshin, V. S. “Cyanate ester monomers and oligomers. Overview of the modern research state and perspectives”. Polym. Sci. Ser. B 2022, 64, 241–270. DOI: 10.1134/S1560090422200027.
  • Iredale, R. J.; Ward, C.; Hamerton, I. “Modern advances in bismaleimide resin technology: a 21st century perspective on the chemistry of addition polyimides”. Prog. Polym. Sci 2017, 69, 1–21. DOI: 10.1016/j.progpolymsci.2016.12.002.
  • Gu, H.; Gao, C.; Du, A.; Guo, Y.; Zhou, H.; Zhao, T.; Naik, N.; Guo, Z. “An overview of high-performance phthalonitrile resins: fabrication and electronic applications”. J. Mater. Chem. C 2022, 10, 2925–2937. DOI: 10.1039/D1TC05715D.
  • Zhang, H.; Zhang, Y.; Chen, J.; Liu, W.; Wang, W. “Effect of desulfurization process variables on the properties of crumb rubber modified asphalt”. Polymers (Basel) 2022, 14, 1365. DOI: 10.3390/polym14071365.
  • Mashaan, N. S.; Ali, A. H.; Karim, M. R.; Abdelaziz, M. “A review on using crumb rubber in reinforcement of asphalt pavement”. Sci. World J 2014, 2014, 1–21. DOI: 10.1155/2014/214612.
  • Mashaan, N. S.; Ali, A. H.; Karim, M. R.; Abdelaziz, M. “An overview of crumb rubber modified asphalt”. Int. J. Phys. Sci 2012, 7, 166–170. DOI: 10.5897/IJPSX11.007.
  • Xie, H.; Li, C.; Wang, Q. “A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats”. Constr. Build. Mater 2022, 326, 126792. DOI: 10.1016/j.conbuildmat.2022.126792.
  • Cong, L.; Yang, F.; Guo, G.; Ren, M.; Shi, J.; Tan, L. “The use of polyurethane for asphalt pavement engineering applications: a state-of-the-art review”. Constr. Build. Mater 2019, 225, 1012–1025. DOI: 10.1016/j.conbuildmat.2019.07.213.
  • Huang, G.; Yang, T.; He, Z.; Yu, L.; Xiao, H. “Polyurethane as a modifier for road asphalt: a literature review”. Constr. Build. Mater 2022, 356, 129058. DOI: 10.1016/j.conbuildmat.2022.129058.
  • Geckil, T.; Seloglu, M. “Performance properties of asphalt modified with reactive terpolymer”. Constr. Build. Mater 2018, 173, 262–271. DOI: 10.1016/j.conbuildmat.2018.04.036.
  • Geçkil, T. “Physical, chemical, microstructural and rheological properties of reactive terpolymer-modified bitumen”. Materials 2019, 12, 921. DOI: 10.3390/ma12060921.
  • Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. “Effect of WCO addition on high and low-temperature performance of RET modified bitumen”. Constr. Build. Mater 2022, 323, 126561. DOI: 10.1016/j.conbuildmat.2022.126561.
  • Navarro, F. J.; Partal, P.; García-Morales, M.; Martinez-Boza, F. J.; Gallegos, C. “Bitumen modification with a low-molecular-weight reactive isocyanate-terminated polymer”. Fuel 2007, 86, 2291–2299. DOI: 10.1016/j.fuel.2007.01.023.
  • Zhang, H.; Wu, X.; Cao, D.; Zhang, Y.; He, M. “Effect of linear low density-polyethylene grafted with maleic anhydride (LLDPE-g-MAH) on properties of high density-polyethylene/styrene–butadiene–styrene (HDPE/SBS) modified Asphalt”. Constr. Build. Mater 2013, 47, 192–198. DOI: 10.1016/j.conbuildmat.2013.04.047.
  • Ma, D.; Zhao, D.; Zhao, J.; Du, S.; Pang, J.; Wang, W.; Fan, C. “Functionalization of reclaimed polyethylene with maleic anhydride and its application in improving the high temperature stability of asphalt mixtures”. Constr. Build. Mater 2016, 113, 596–602. DOI: 10.1016/j.conbuildmat.2016.03.096.
  • Jun, L.; Yuxia, Z.; Yuzhen, Z. “The research of GMA-g-LDPE modified qinhuangdao bitumen”. Constr. Build. Mater 2008, 22, 1067–1073. DOI: 10.1016/j.conbuildmat.2007.03.007.
  • Polacco, G.; Stastna, J.; Biondi, D.; Antonelli, F.; Vlachovicova, Z.; Zanzotto, L. “Rheology of asphalts modified with glycidylmethacrylate functionalized polymers”. J. Colloid Interface Sci 2004, 280, 366–373. DOI: 10.1016/j.jcis.2004.08.043.
  • Cong, P.; Tian, Y.; Liu, N.; Xu, P. “Investigation of epoxy-resin-modified asphalt binder”. J. Appl. Polym. Sci 2016, 133, 3678–3684. DOI: 10.1002/APP.43401.
  • Huang, W.; Guo, W.; Wei, Y. “Prediction of paving performance for epoxy asphalt mixture by its time- and temperature-dependent properties”. J. Mater. Civ. Eng 2020, 32, 04020017. DOI: 10.1061/(ASCE)MT.1943-5533.0003060.
  • Asphalt Institute. Performance Graded Asphalt Binder Specification and Testing Superpave, In Series No. 1 (SP-1); Asphalt Institute: Lexington, KY, USA, 2003.
  • Luo, S.; Liu, Z.; Yang, X.; Lu, Q.; Yin, J. “Construction technology of warm and hot mix epoxy asphalt paving for long-span steel bridge”. J. Constr. Eng. Manage 2019, 145, 04019074. DOI: 10.1061/(ASCE)CO.1943-7862.0001716.
  • Li, C.; Han, X.; Gong, J.; Su, W.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. “Impact of waste cooking oil on the viscosity, microstructure and mechanical performance of warm-mix epoxy asphalt binder”. Constr. Build. Mater 2020, 251, 118994. DOI: 10.1016/j.conbuildmat.2020.118994.
  • Chen, R.; Zhao, R.; Liu, Y.; Cai, J.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. “Development of eco-friendly fire-retarded warm-mix epoxy asphalt binders using reactive polymeric flame retardants for road tunnel pavements”. Constr. Build. Mater 2021, 284, 122752. DOI: 10.1016/j.conbuildmat.2021.122752.
  • Cong, P.; Zhang, A.; Ge, W.; Cheng, Y. “Study on macroscopic properties and microstructure of thermosetting polyurethane asphalt binder (PAB) based on curing kinetics”. Constr. Build. Mater 2022, 333, 127347. DOI: 10.1016/j.conbuildmat.2022.127347.
  • Shao, W.-X.; Zhou, B.-J. “Study on performance of new type cold mix epoxy asphalt and mixture for steel deck pavement”. IOP Conf. Ser: Earth Environ. Sci. 2021, 787, 012004. IOP Publishing, DOI: 10.1088/1755-1315/787/1/012004.
  • Polacco, G.; Stastna, J.; Biondi, D.; Zanzotto, L. “Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts”. Curr. Opin. Colloid Interface Sci 2006, 11, 230–245. DOI: 10.1016/j.cocis.2006.09.001.
  • Su, W.; Han, X.; Gong, J.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. “Toughening epoxy asphalt binder using core-shell rubber nanoparticles”. Constr. Build. Mater 2020, 258, 119716. DOI: 10.1016/j.conbuildmat.2020.119716.
  • Williams, R. J. J.; Rozenberg, B. A.; Pascault, J.-P. Reaction-induced phase separation in modified thermosetting polymers., In Polymer Analysis Polymer Physics; Springer Berlin Heidelberg: Berlin, Heidelberg, 1997 pp. 95–156
  • Lu, X.; Isacsson, U. “Artificial aging of polymer modified bitumens”. J. Appl. Polym. Sci 2000, 76, 1811–1824. DOI: 10.1002/(SICI)1097-4628(20000620)76:12<1811::AID-APP12>3.0.CO;2-1.
  • Zani, L.; Giustozzi, F.; Harvey, J. “Effect of storage stability on chemical and rheological properties of polymer-modified asphalt binders for road pavement construction”. Constr. Build. Mater 2017, 145, 326–335. DOI: 10.1016/j.conbuildmat.2017.04.014.
  • Liu, Y.; Xi, Z.; Cai, J.; Xie, H. “Laboratory investigation of the properties of epoxy asphalt rubber (EAR)”. Mater. Struct 2017, 50, 219. DOI: 10.1617/s11527-017-1089-4.
  • Liu, Y.; Zhang, J.; Jiang, Y.; Li, C.; Xi, Z.; Cai, J.; Xie, H. “Investigation of secondary phase separation and mechanical properties of epoxy SBS-modified asphalts”. Constr. Build. Mater 2018, 165, 163–172. DOI: 10.1016/j.conbuildmat.2018.01.032.
  • Liu, Y.; Zhang, J.; Chen, R.; Cai, J.; Xi, Z.; Xie, H. “Ethylene vinyl acetate copolymer modified epoxy asphalt binders: phase separation evolution and mechanical properties”. Constr. Build. Mater 2017, 137, 55–65. DOI: 10.1016/j.conbuildmat.2017.01.081.
  • Lesueur, D. “The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification”. Adv. Colloid Interface Sci 2009, 145, 42–82. DOI: 10.1016/j.cis.2008.08.011.
  • Binti Joohari, I.; Giustozzi, F. “Effect of different vinyl-acetate contents in hybrid SBS-EVA modified bitumen”. Constr. Build. Mater 2020, 262, 120574. DOI: 10.1016/j.conbuildmat.2020.120574.
  • Li, H.; Cui, C.; Temitope, A. A.; Feng, Z.; Zhao, G.; Guo, P. “Effect of SBS and crumb rubber on asphalt modification: a review of the properties and practical application”. J. Traffic Transp. Eng. (Engl. Ed) 2022, 9, 836–863. DOI: 10.1016/j.jtte.2022.03.002.
  • Liang, M.; Xin, X.; Fan, W.; Luo, H.; Wang, X.; Xing, B. “Investigation of the rheological properties and storage stability of CR/SBS modified asphalt”. Constr. Build. Mater 2015, 74, 235–240. DOI: 10.1016/j.conbuildmat.2014.10.022.
  • Zhang, J.; Su, W.; Liu, Y.; Gong, J.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. “Laboratory investigation on the microstructure and performance of SBS modified epoxy asphalt binder”. Constr. Build. Mater 2021, 270, 121378. DOI: 10.1016/j.conbuildmat.2020.121378.
  • Gong, J.; Han, X.; Su, W.; Xi, Z.; Cai, J.; Wang, Q.; Li, J.; Xie, H. “Laboratory evaluation of warm-mix epoxy sbs modified asphalt binders containing sasobit”. J. Build. Eng 2020, 32, 101550. DOI: 10.1016/j.jobe.2020.101550.
  • Gong, J.; Jing, F.; Zhao, R.; Li, C.; Cai, J.; Wang, Q.; Xie, H. “Waste cooking oil-modified epoxy asphalt rubber binders with improved compatibility and extended allowable construction time”. Molecules 2022, 27, 7061. DOI: 10.3390/molecules27207061.
  • Min, Z.; Wang, Q.; Zhang, K.; Shen, L.; Lin, G.; Huang, W. “Investigation on the properties of epoxy asphalt mixture containing crumb rubber for bridge expansion joint”. Constr. Build. Mater 2022, 331, 127344. DOI: 10.1016/j.conbuildmat.2022.127344.
  • Su, W.; Zhao, R.; Wang, R.; Xi, Z.; Cai, J.; Zhang, J.; Wang, Q.; Xie, H. “Microstructure and performance of epoxy asphalt binders modified by core-shell rubbers containing different core polymers”. Constr. Build. Mater 2021, 304, 124689. DOI: 10.1016/j.conbuildmat.2021.124689.
  • Sun, J.; Zhang, Z.; Wang, L.; Liu, H.; Ban, X.; Ye, J. “Investigation on the epoxy/polyurethane modified asphalt binder cured with bio-based curing agent: properties and optimization”. Constr. Build. Mater 2022, 320, 126221. DOI: 10.1016/j.conbuildmat.2021.126221.
  • Zhang, Z.; Sun, J.; Huang, Z.; Wang, F.; Jia, M.; Lv, W.; Ye, J. “A laboratory study of epoxy/polyurethane modified asphalt binders and mixtures suitable for flexible bridge deck pavement”. Constr. Build. Mater 2021, 274, 122084. DOI: 10.1016/j.conbuildmat.2020.122084.
  • He, Q.; Zhang, H.; Li, J.; Duan, H. “Performance evaluation of polyurethane/epoxy resin modified asphalt as adhesive layer material for steel-UHPC composite bridge deck pavements”. Constr. Build. Mater 2021, 291, 123364. DOI: 10.1016/j.conbuildmat.2021.123364.
  • Sasaki, I.; Moriyoshi, A.; Hachiya, Y. “Water/gas permeability of bituminous mixtures and involvement in blistering phenomenon”. J. Jpn. Petrol. Inst 2006, 49, 57–64. DOI: 10.1627/jpi.49.57.
  • Liao, M.; Luo, R. “Influencing factors and mechanisms of blistering in epoxy asphalt mixtures for steel deck pavements”. Constr. Build. Mater 2022, 316, 126036. DOI: 10.1016/j.conbuildmat.2021.126036.
  • Amin, S.; Islam, M. R.; Hasan Kashem, M. N.; Pervez, A. Applications of unsaturated polyester resins in asphalt pavements. In Applications of Unsaturated Polyester Resins; Thomas, S. and Chirayil, C. J. Eds.; Elsevier: Amsterdam, Netherlands, 2023 pp. 205–222
  • Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. “Using phenol formaldehyde resin, hexamethylenetetramine and matrix asphalt to synthesize hard-grade asphalts for high-modulus asphalt concrete”. Sustainability 2022, 14, 15689. DOI: 10.3390/su142315689.
  • Yang, S.; Ji, J.; Tao, H.; Muhammad, Y.; Huang, J.; Wang, S.; Wei, Y.; Li, J. “Fabrication of urea formaldehyde–epoxy resin microcapsules for the preparation of high self-healing ability containing SBS modified asphalt”. Polym. Compos 2021, 42, 4128–4137. DOI: 10.1002/pc.26135.
  • Aguirre, M. A.; Hassan, M. M.; Shirzad, S.; Daly, W. H.; Mohammad, L. N. “Micro-encapsulation of asphalt rejuvenators using melamine-formaldehyde”. Constr. Build. Mater 2016, 114, 29–39. DOI: 10.1016/j.conbuildmat.2016.03.157.
  • Alhazmi, H.; Shah, S. A. R.; Anwar, M. K.; Raza, A.; Ullah, M. K.; Iqbal, F. “Utilization of polymer concrete composites for a circular economy: a comparative review for assessment of recycling and waste utilization”. Polymers (Basel) 2021, 13, 2135. DOI: 10.3390/polym13132135.
  • Nodehi, M. “Epoxy, polyester and vinyl ester based polymer concrete: a review”. Innov. Infrastruct. Solut 2021, 7, 64. DOI: 10.1007/s41062-021-00661-3.
  • Wang, X.; Ma, B.; Su, W.; Tao, J.; Shi, H.; Si, W. “Design and laboratory performance of reactive cold patching materials containing epoxy/unsaturated polyester blends”. Constr. Build. Mater 2023, 377, 131152. DOI: 10.1016/j.conbuildmat.2023.131152.
  • Gao, Y.; Romero, P.; Zhang, H.; Huang, M.; Lai, F. “Unsaturated polyester resin concrete: a review”. Constr. Build. Mater 2019, 228, 116709. DOI: 10.1016/j.conbuildmat.2019.116709.
  • Çubuk, M.; Gürü, M.; Çubuk, M. K. “Improvement of bitumen performance with epoxy resin”. Fuel 2009, 88, 1324–1328. DOI: 10.1016/j.fuel.2008.12.024.
  • Carreño Gómez, N. H.; Oeser, M.; Fleischel, O. “Chemical modification of bitumen with novel isocyanate-based additive to enhance asphalt performance”. Constr. Build. Mater 2021, 301, 124128. DOI: 10.1016/j.conbuildmat.2021.124128.
  • Fang, C.; Yu, X.; Yu, R.; Liu, P.; Qiao, X. “Preparation and properties of isocyanate and nano particles composite modified asphalt”. Constr. Build. Mater 2016, 119, 113–118. DOI: 10.1016/j.conbuildmat.2016.04.099.
  • Carreño Gómez, N. H.; Fleischel, O.; Oeser, M. “Thermal ageing behaviour of isocyanate-based bitumen additive”. Constr. Build. Mater 2022, 327, 126932. DOI: 10.1016/j.conbuildmat.2022.126932.
  • Ellis, B. Introduction to the chemistry, synthesis, manufacture and characterization of epoxy resins. In Chemistry and Technology of Epoxy Resins; Ellis, B. Ed.; Springer: Dordrecht, Netherlands, 1993 pp. 1–36
  • May, C. Epoxy Resins: Chemistry and Technology; Marcel Dekker: New York, USA, 1988.
  • Xie, H.; Liu, B.; Sun, Q.; Yuan, Z.; Shen, J.; Cheng, R. “Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC”. J. Appl. Polym. Sci 2005, 96, 329–335. DOI: 10.1002/app.21415.
  • Xie, H.; Liu, B.; Yuan, Z.; Shen, J.; Cheng, R. “Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry”. J. Polym. Sci. B Polym. Phys 2004, 42, 3701–3712. DOI: 10.1002/polb.20220.
  • Mohan, P. “A critical review: the modification, properties, and applications of epoxy resins”. Polym. Plast. Technol. Eng 2013, 52, 107–125. DOI: 10.1080/03602559.2012.727057.
  • Xiang, Q.; Xiao, F. “Applications of epoxy materials in pavement engineering”. Constr. Build. Mater 2020, 235, 117529. DOI: 10.1016/j.conbuildmat.2019.117529.
  • Gantrade Corporation. Epoxy resins: https://www.gantrade.com/blog/epoxy-resins.
  • Lu, Q.; Bors, J. “Alternate uses of epoxy asphalt on bridge decks and roadways”. Constr. Build. Mater 2015, 78, 18–25. DOI: 10.1016/j.conbuildmat.2014.12.125.
  • Simpson, W. C.; Sommer, H. J.; Griffin, R. L.; Miles, T. K. “Epoxy asphalt concrete for airfield pavements”. J. Air Transport Div 1960, 86, 57–71. DOI: 10.1061/JACEAL.0000086.
  • Balala, B. “Studies leading to choice of epoxy asphalt for pavement on steel orthotropic bridge deck of san mateo-hayward bridge”, Highw. Res. Rec 1969, 287, 12–18.
  • Maggenti, R.; Shatnawi, S. “Initial and replacement riding surface for the orthotropic San Mateo/Hayward bridge”. Bridge Struct 2017, 13, 81–92. DOI: 10.3233/BRS-170116.
  • Liu, Y.; Shen, Z.; Liu, J.; Chen, S.; Wang, J.; Wang, X. “Advances in the application and research of steel bridge deck pavement”. Structures 2022, 45, 1156–1174. DOI: 10.1016/j.istruc.2022.09.084.
  • Nie, W.; Wang, D.; Yan, J.; Zhang, X. “Optimal design of mix proportion of hot-mix epoxy asphalt mixture for steel bridge decks and its anti-slip performance”. Buildings 2022, 12, 437. DOI: 10.3390/buildings12040437.
  • Yao, B.; Chen, C.; Loh, K. J. “Performance characteristics of diluted epoxy asphalt binders and their potential application in chip seal”. J. Mater. Civ. Eng 2019, 31, 04019290. DOI: 10.1061/(ASCE)MT.1943-5533.0002943.
  • Wu, J. P.; Herrington, P. R.; Alabaster, D. “Long-term durability of epoxy-modified open-graded porous asphalt wearing course”. Int. J. Pavement Eng 2019, 20, 920–927. DOI: 10.1080/10298436.2017.1366764.
  • Luo, S.; Qian, Z-d.; Xue, Y-c “Performance evaluation of open-graded epoxy asphalt concrete with two nominal maximum aggregate sizes”. J. Cent. South Univ. 2015, 22, 4483–4489. DOI: 10.1007/s11771-015-2996-6.
  • Takahashi, M.; Shimazaki, M.; Aoki, M. "Applicability of bright-colored epoxy asphalt mixture for repair of concrete pavements in tunnels", In 11th International Symposium of Asphalt Pavements (ISAP); International Society for Asphalt Pavements (ISAP): Nagoya, Aichi, Japan, 2010.
  • Nakanishi, H.; Takei, S.; Kasugai, N. Strength generation of epoxy asphalt mixture. In 3rd China-Japan Workshop on Pavement Technologies, Nanjing, China, 2005.
  • Huang, W.; Qian, Z.; Chen, G.; Yang, J. “Epoxy asphalt concrete paving on the deck of long-span steel bridges”. Chinese Sci. Bull 2003, 48, 2391–2394. DOI: 10.1360/02ww0123.
  • Jamshidi, A.; White, G.; Kurumisawa, K. “Rheological characteristics of epoxy asphalt binders and engineering properties of epoxy asphalt mixtures – state-of-the-art”. Road Mater. Pavement Des 2022, 23, 1957–1980. DOI: 10.1080/14680629.2021.1963814.
  • Jamshidi, A.; White, G.; Kurumisawa, K. “Functional and field performance of epoxy asphalt technology – state-of-the-art, road. ” Mater. Pavement Des 2023, 24, 881–918. DOI: 10.1080/14680629.2022.2060128.
  • Zhou, D.; Liang, R.; Kang, Y. “A Review of chemo-rheological and thermo-rheological investigations on epoxy asphalt cementitious materials”. Constr. Build. Mater 2023, 395, 132309. DOI: 10.1016/j.conbuildmat.2023.132309.
  • Petrie, E. Epoxy Adhesives Formulations; McGraw-Hill: New York, USA, 2006.
  • Pham, H. Q.; Marks, M. J. Epoxy Resins, in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2011.
  • Prileschajew, N. “Oxydation ungesättigter verbindungen mittels organischer superoxyde”. Ber. Dtsch. Chem. Ges 1909, 42, 4811–4815. DOI: 10.1002/cber.190904204100.
  • Lu, Q.; Xin, C.; Alamri, M.; Alharthai, M. “Development of porous asphalt mixture with bio-based epoxy asphalt”. J. Cleaner Prod 2021, 317, 128404. DOI: 10.1016/j.jclepro.2021.128404.
  • Li, R.; Bahadori, A.; Xin, J.; Zhang, K.; Muhunthan, B.; Zhang, J. “Characteristics of bioepoxy based on waste cooking oil and lignin and its effects on asphalt binder”. Constr. Build. Mater 2020, 251, 118926. DOI: 10.1016/j.conbuildmat.2020.118926.
  • Xin, J.; Li, M.; Li, R.; Wolcott, M. P.; Zhang, J. “Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt”. ACS Sustainable Chem. Eng 2016, 4, 2754–2761. DOI: 10.1021/acssuschemeng.6b00256.
  • Liang, R.; Jin, R.; Zhou, D. H.; Sun, W. X.; Kang, Y. “Nonlinear rheological behaviors of epoxy asphalt binder compared to base asphalt binder and sbs modified asphalt binder at above ambient temperatures”. Constr. Build. Mater 2020, 250, 118755. DOI: 10.1016/j.conbuildmat.2020.118755.
  • Wang, Q.; Min, Z.; Wong, Y. D.; Shi, Z.; Huang, W. “Aging degradation of anhydride-cured epoxy asphalt binder subjected to ultraviolet exposure”. Int. J. Pavement Eng 2023, 24, 2171037. DOI: 10.1080/10298436.2023.2171037.
  • Kang, Y.; Jin, R.; Wu, Q.; Pu, L.; Song, M.; Cheng, J.; Yu, P. “Anhydrides-cured bimodal rubber-like epoxy asphalt composites: from thermosetting to quasi-thermosetting”. Polymers (Basel) 2016, 8, 104. DOI: 10.3390/polym8040104.
  • Li, M.; Min, Z.; Wang, Q.; Huang, W.; Shi, Z. “Effect of epoxy resin content and conversion rate on the compatibility and component distribution of epoxy asphalt: A MD simulation study”. Constr. Build. Mater 2022, 319, 126050. DOI: 10.1016/j.conbuildmat.2021.126050.
  • Fuhaid, A. A.; Lu, Q.; Luo, S. “Laboratory evaluation of biobased epoxy asphalt binder for asphalt pavement”. J. Mater. Civ. Eng 2018, 30, 06018007. DOI: 10.1061/(ASCE)MT.1943-5533.0002383.
  • Yin, H.; Jin, H.; Wang, C.; Sun, Y.; Yuan, Z.; Xie, H.; Wang, Z.; Cheng, R. “Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts”. J. Therm. Anal. Calorim 2014, 115, 1073–1080. DOI: 10.1007/s10973-013-3449-9.
  • Zhang, F.; Zhang, L.; Muhammad, Y.; Cai, Z.; Guo, X.; Guo, Y.; Huang, K. “Study on preparation and properties of new thermosetting epoxy asphalt”. Constr. Build. Mater 2021, 311, 125307. DOI: 10.1016/j.conbuildmat.2021.125307.
  • Zhang, F.; Zhang, L.; Guo, X.; Hu, D.; Cai, Z.; Huang, K. “Laboratory development and evaluation of an oleylamine curing epoxy asphalt”. Int. J. Pavement Eng 2022. DOI: 10.1080/10298436.2022.2094925.
  • Tian, J.; Luo, S.; Lu, Q.; Liu, S. “Effects of epoxy resin content on properties of hot mixing epoxy asphalt binders”. J. Mater. Civ. Eng 2022, 34, 04022145. DOI: 10.1061/(ASCE)MT.1943-5533.0004259.
  • Liu, M.; Hu, J.; Sun, J.; Li, Y.; Luo, S. “Characterization of roadway epoxy asphalt binder with different epoxy contents”. J. Mater. Civ. Eng 2023, 35, 04023144. DOI: 10.1061/JMCEE7.MTENG-15332.
  • Luo, S.; Sun, J.; Hu, J.; Liu, S. “Performance evolution mechanism of hot-mix epoxy asphalt binder and mixture based on component characteristics”. J. Mater. Civ. Eng 2022, 34, 04022235. DOI: 10.1061/(ASCE)MT.1943-5533.0004379.
  • Haibara, Y.; Ge, H.; Sun, J. “Materials optimization and service performance evaluation of a novel steel bridge deck pavement structure: a case study”. Appl. Sci 2023, 13, 5930. DOI: 10.3390/app13105930.
  • Zeng, G.; Xu, W.; Huang, H.; Zhang, X. “Study on the microstructure and properties of hot-mix epoxy asphalt”. Int. J. Pavement Res. Technol 2019, 12, 147–153. DOI: 10.1007/s42947-019-0019-y.
  • Li, S.; Huang, K.; Yang, X.; Li, M.; Xia, J. “Design, preparation and characterization of novel toughened epoxy asphalt based on a vegetable oil derivative for bridge deck paving”. RSC Adv 2014, 4, 44741–44749. DOI: 10.1039/C4RA07637K.
  • Zhou, W.; Xia, Y.; Tsai, F.-C.; Jiang, T.; Zhao, H.; Wen, J. “Effects of compound curing agent on the thermo-mechanical properties and structure of epoxy asphalt”. Int. J. Pavement Eng 2017, 18, 928–936. DOI: 10.1080/10298436.2016.1138109.
  • Li, M.; Min, Z.; Wang, Q.; Huang, W.; Shi, Z. “Influence of curing agent ratio, asphalt content and crosslinking degree on the compatibility and component distribution of epoxy asphalt in compound curing agent system”. Int. J. Pavement Eng 2022, DOI: 10.1080/10298436.2022.2136375.
  • Zhao, R.; Jing, F.; Wang, R.; Cai, J.; Zhang, J.; Wang, Q.; Xie, H. “Influence of oligomer content on viscosity and dynamic mechanical properties of epoxy asphalt binders”. Constr. Build. Mater. 2022, 338, 127524. DOI: 10.1016/j.conbuildmat.2022.127524.
  • Yin, H.; Zhang, Y.; Sun, Y.; Xu, W.; Yu, D.; Xie, H.; Cheng, R. “Performance of hot mix epoxy asphalt binder and its concrete”. Mater. Struct 2015, 48, 3825–3835. DOI: 10.1617/s11527-014-0442-0.
  • Hu, C.; Zhao, J.; Leng, Z.; Partl, M. N.; Li, R. “Laboratory evaluation of waterborne epoxy bitumen emulsion for pavement preventative maintenance application”. Constr. Build. Mater 2019, 197, 220–227. DOI: 10.1016/j.conbuildmat.2018.11.223.
  • Sun, Y.; Liu, Y.; Gong, J.; Han, X.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. “Thermal and bonding properties of epoxy asphalt bond coats”. J. Therm. Anal. Calorim 2022, 147, 2013–2025. DOI: 10.1007/s10973-021-10630-8.
  • Yu, X.; Wang, J.; Si, J.; Mei, J.; Ding, G.; Li, J. “Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder”. Constr. Build. Mater 2020, 250, 118868. DOI: 10.1016/j.conbuildmat.2020.118868.
  • Ding, G.; Yu, X.; Si, J.; Mei, J.; Wang, J.; Chen, B. “Influence of epoxy soybean oil modified nano-silica on the compatibility of cold-mixed epoxy asphalt”. Mater. Struct 2021, 54, 16. DOI: 10.1617/s11527-020-01611-8.
  • Si, J.; Jia, Z.; Wang, J.; Yu, X.; Li, Y.; Dong, F.; Jiang, R. “Comparative analysis of cold-mixed epoxy and epoxy SBS-modified asphalts: curing rheology, thermal, and mechanical properties”. Constr. Build. Mater 2018, 176, 165–171. DOI: 10.1016/j.conbuildmat.2018.05.035.
  • Wang, J.; Yu, X.; Ding, G.; Si, J.; Ruan, W.; Zou, X. “Influence of asphalt solvents on the rheological and mechanical properties of cold-mixed epoxy asphalt”. Constr. Build. Mater 2021, 310, 125245. DOI: 10.1016/j.conbuildmat.2021.125245.
  • Müller, B.; Poth, U. Coatings Formulation: An International Textbook; Vincentz Network: Hanover, 2017.
  • Chen, Q.; Wang, C.; Yu, S.; Song, Z.; Fu, H.; An, T. “Low-temperature mechanical properties of polyurethane-modified waterborne epoxy resin for pavement coating”. Int. J. Pavement Eng 2022, DOI: 10.1080/10298436.2022.2099853.
  • Al-Mohammedawi, A.; Mollenhauer, K. “Current research and challenges in bitumen emulsion manufacturing and its properties”. Materials 2022, 15, 2026. DOI: 10.3390/ma15062026.
  • Asphalt. Institute. A Basic Asphalt Emulsion Manual; Asphalt Institute: Lexington, KY, USA, 2004.
  • Meng, Y.; Chen, J.; Kong, W.; Hu, Y. “Review of emulsified asphalt modification mechanisms and performance influencing factors”. J. Road Eng 2023, 3, 141–155. DOI: 10.1016/j.jreng.2023.01.006.
  • Jair, M. Bitumen Emulsions., In The Shell Bitumen Handbook, 6th ed.; ICE Publishing: London, UK, 2015 pp. 185–216
  • Zhang, Q.; Xu, Y-h.; Wen, Z-g “Influence of water-borne epoxy resin content on performance of waterborne epoxy resin compound SBR modified emulsified asphalt for tack coat”. Constr. Build. Mater 2017, 153, 774–782. DOI: 10.1016/j.conbuildmat.2017.07.148.
  • Liu, M.; Han, S.; Pan, J.; Ren, W. “Study on cohesion performance of waterborne epoxy resin emulsified asphalt as interlayer materials”. Constr. Build. Mater 2018, 177, 72–82. DOI: 10.1016/j.conbuildmat.2018.05.043.
  • Liu, F.; Zheng, M.; Fan, X.; Li, H.; Wang, F. “Performance evaluation of waterborne epoxy resin-SBR compound modified emulsified asphalt micro-surfacing”. Constr. Build. Mater 2021, 295, 123588. DOI: 10.1016/j.conbuildmat.2021.123588.
  • Ren, H.; Qian, Z.; Huang, W.; Li, H.; Liu, G. “High-temperature rheological properties of waterborne epoxy asphalt emulsion mastic”. Constr. Build. Mater 2022, 325, 126796. DOI: 10.1016/j.conbuildmat.2022.126796.
  • Yao, X.; Xu, H.; Xu, T. “Mechanical properties and enhancement mechanisms of cold recycled mixture using waterborne epoxy resin/styrene butadiene rubber latex modified emulsified asphalt”. Constr. Build. Mater 2022, 352, 129021. DOI: 10.1016/j.conbuildmat.2022.129021.
  • Gu, Y.; Tang, B.; He, L.; Yang, F.; Wang, H.; Ling, J. “Compatibility of cured phase-inversion waterborne epoxy resin emulsified asphalt”. Constr. Build. Mater 2019, 229, 116942. DOI: 10.1016/j.conbuildmat.2019.116942.
  • Ren, H.; Qian, Z.; Huang, W.; Li, H.; Liu, Y. “Low-Temperature thermal cracking performance of waterborne epoxy asphalt emulsion mastic based on bending beam rheometer (BBR)”. Constr. Build. Mater 2022, 334, 127461. DOI: 10.1016/j.conbuildmat.2022.127461.
  • Li, R.; Leng, Z.; Partl, M. N.; Raab, C. “Characterization and modelling of creep and recovery behaviour of waterborne epoxy resin modified bitumen emulsion”. Mater. Struct 2021, 54, 8. DOI: 10.1617/s11527-020-01594-6.
  • Byzyka, J.; Davie, H.; Al-Kheetan, M. J.; Rahman, M. “A study on cold laid microsurfacing containing water-based epoxy-modified bitumen emulsion”. Int. J. Pavement Res. Technol. 2023. DOI: 10.1007/s42947-023-00285-z.
  • Ji, J.; Shi, Q.; Zhang, R.; Suo, Z.; Wang, J. “Viscosity, mechanical properties and phase-separated morphology of waterborne epoxy asphalt”. Constr. Build. Mater 2022, 334, 127074. DOI: 10.1016/j.conbuildmat.2022.127074.
  • Li, Y.; Yang, X.; Lu, B. “Preparation and curing properties of waterborne epoxy emulsified asphalt/DMP-30 composites”, Case Stud. Constr. Mater 2023, 18, e01869. DOI: 10.1016/j.cscm.2023.e01869.
  • Li, P.; Ji, J.; Wang, Z.; Wu, Y.; Suo, Z.; Dong, Y.; Xu, M. “Performance evaluation and equivalent conversion of waterborne epoxy resin emulsified asphalt based on different evaporation methods”. J. Cleaner Prod 2022, 353, 131461. DOI: 10.1016/j.jclepro.2022.131461.
  • Ren, H.; Qian, Z.; Huang, W.; Huang, Q. “Evaluation of properties and performance improvement mechanism of novel waterborne epoxy modified asphalt emulsion with styrene–butadiene–chloroprene rubber”. J. Mater. Civ. Eng 2022, 34, 04022195. DOI: 10.1061/(ASCE)MT.1943-5533.0004301.
  • Xu, P.; Wang, Y.; Cheng, P.; Cong, P.; Li, D.; Zhang, Z.; Hui, J.; Ye, M. “Toughness modification of waterborne epoxy emulsified asphalt by waterborne polyurethane elastomer”. Constr. Build. Mater 2023, 386, 131547. DOI: 10.1016/j.conbuildmat.2023.131547.
  • Jing, R.; Apostolidis, P.; Liu, X.; Naus, R.; Erkens, S.; Skarpas, T. “Effect of recycling agents on rheological properties of epoxy bitumen”. Road Mater. Pavement Des 2022, 23, 2592–2606. DOI: 10.1080/14680629.2021.1986122.
  • Xu, P.; Zhu, X.; Cong, P.; Du, X.; Zhang, R. “Modification of alkyl group terminated hyperbranched polyester on paving epoxy asphalt”. Constr. Build. Mater 2018, 165, 295–302. DOI: 10.1016/j.conbuildmat.2017.12.182.
  • Xu, P.; Cong, P.; Ye, H.; Chen, S. “Modification of epoxy asphalt by hyperbranched polyester”. Adv. Mater. Res 2013, 716, 379–382. DOI: 10.4028/www.scientific.net/AMR.716.379.
  • Du, X.; Xu, P.; Cong, P.; Zhou, Z. “Compatibilization and toughness modification of linear aliphatic epoxy compound on paving epoxy asphalt”. Mater. Struct 2020, 53, 42. DOI: 10.1617/s11527-020-01473-0.
  • Si, J.; Li, Y.; Wang, J.; Niyigena, A. R.; Yu, X.; Jiang, R. “Improving the compatibility of cold-mixed epoxy asphalt based on the epoxidized soybean oil”. Constr. Build. Mater 2020, 243, 118235. DOI: 10.1016/j.conbuildmat.2020.118235.
  • Xu, P.; Du, X.; Cong, P.; Zhou, Z. “Properties of paving epoxy asphalt with epoxy-terminated hyperbranched polyester, road”. Mater. Pavement Des 2022, 23, 234–246. DOI: 10.1080/14680629.2020.1826342.
  • Mi, X.; Liang, N.; Xu, H.; Wu, J.; Jiang, Y.; Nie, B.; Zhang, D. “Toughness and its mechanisms in epoxy resins”. Prog. Mater Sci 2022, 130, 100977. DOI: 10.1016/j.pmatsci.2022.100977.
  • Mousavi, S. R.; Estaji, S.; Paydayesh, A.; Arjmand, M.; Jafari, S. H.; Nouranian, S.; Khonakdar, H. A. “A review of recent progress in improving the fracture toughness of epoxy-based composites using carbonaceous nanofillers”. Polym. Compos 2022, 43, 1871–1886. DOI: 10.1002/pc.26518.
  • Xie, H.; Zhao, R.; Wang, R.; Xi, Z.; Yuan, Z.; Zhang, J.; Wang, Q. “Influence of thermal shock on the performance of B-staged epoxy bond coat for orthotropic steel bridge pavements”. Constr. Build. Mater 2021, 294, 123598. DOI: 10.1016/j.conbuildmat.2021.123598.
  • Gong, J.; Liu, Y.; Wang, Q.; Xi, Z.; Cai, J.; Ding, G.; Xie, H. “Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers”. Constr. Build. Mater 2019, 204, 288–295. DOI: 10.1016/j.conbuildmat.2019.01.197.
  • Capricho, J. C.; Fox, B.; Hameed, N. “Multifunctionality in epoxy resins”. Polym. Rev 2020, 60, 1–41. DOI: 10.1080/15583724.2019.1650063.
  • Qiu, S. L.; Wang, C. S.; Wang, Y. T.; Liu, C. G.; Chen, X. Y.; Xie, H. F.; Huang, Y. A.; Cheng, R. S. “Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin”. Express Polym. Lett 2011, 5, 809–818. DOI: 10.3144/expresspolymlett.2011.79.
  • Wang, Y. T.; Wang, C. S.; Yin, H. Y.; Wang, L. L.; Xie, H. F.; Cheng, R. S. “Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties”. Express Polym. Lett 2012, 6, 719–728. DOI: 10.3144/expresspolymlett.2012.77.
  • Jin, H.; Zhang, Y.; Wang, C.; Sun, Y.; Yuan, Z.; Pan, Y.; Xie, H.; Cheng, R. “Thermal, mechanical, and morphological properties of soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs)”. J. Therm. Anal. Calorim 2014, 117, 773–781. DOI: 10.1007/s10973-014-3849-5.
  • Xu, K.; Chen, R.; Wang, C.; Sun, Y.; Zhang, J.; Liu, Y.; Xie, H.; Cheng, R. “Organomontmorillonite-modified soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs)”. J. Therm. Anal. Calorim 2016, 126, 1253–1260. DOI: 10.1007/s10973-016-5795-x.
  • Xu, K.; Li, C.; Wang, C.; Jiang, Y.; Liu, Y.; Xie, H. “Natural and acid-treated attapulgite reinforced soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks”. J. Therm. Anal. Calorim 2019, 137, 1189–1198. DOI: 10.1007/s10973-019-08033-x.
  • Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G. H.; Vahid, S. “Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status”. Nanoscale 2015, 7, 10294–10329. DOI: 10.1039/c5nr01354b.
  • Huang, Q.; Qian, Z.; Chen, L.; Zhang, M.; Zhang, X.; Sun, J.; Hu, J. “Evaluation of epoxy asphalt rubber with silane coupling agent used as tack coat for seasonally frozen orthotropic steel bridge decks”. Constr. Build. Mater 2020, 241, 117957. DOI: 10.1016/j.conbuildmat.2019.117957.
  • Sun, J.; Zhang, Z.; Ye, J.; Liu, H.; Wei, Y.; Zhang, D.; Li, X. “Preparation and properties of polyurethane/epoxy-resin modified asphalt binders and mixtures using a bio-based curing agent”. J. Cleaner Prod 2022, 380, 135030. DOI: 10.1016/j.jclepro.2022.135030.
  • Yu, H.; Jiang, H.; Qian, G.; Zhu, X.; Yao, D.; Zhang, C.; Li, J.; Zhong, H. “Modification effects of multi-walled carbon nanotubes on the mechanical and rheological properties of epoxy asphalt”. Constr. Build. Mater 2023, 369, 130154. DOI: 10.1016/j.conbuildmat.2022.130154.
  • Xu, P.; Zhu, Z.; Wang, Y.; Cong, P.; Li, D.; Hui, J.; Ye, M. “Phase structure characterization and compatibilization mechanism of epoxy asphalt modified by thermoplastic elastomer (SBS)”. Constr. Build. Mater 2022, 320, 126262. DOI: 10.1016/j.conbuildmat.2021.126262.
  • Jiang, Y.; Liu, Y.; Gong, J.; Li, C.; Xi, Z.; Cai, J.; Xie, H. “Microstructures, thermal and mechanical properties of epoxy asphalt binder modified by SBS containing various styrene-butadiene structures”. Mater. Struct 2018, 51, 86. DOI: 10.1617/s11527-018-1217-9.
  • Jiang, Y.; Zhao, R.; Xi, Z.; Cai, J.; Yuan, Z.; Zhang, J.; Wang, Q.; Xie, H. “Improving toughness of epoxy asphalt binder with reactive epoxidized SBS”. Mater. Struct 2021, 54, 145. DOI: 10.1617/s11527-021-01744-4.
  • Min, Z.; Wang, Q.; Xie, Y.; Xie, J.; Zhang, B. “Influence of polyethylene glycol (PEG) chain on the performance of epoxy asphalt binder and mixture”. Constr. Build. Mater 2021, 272, 121614. DOI: 10.1016/j.conbuildmat.2020.121614.
  • Xu, P.; Cong, P.; Li, D.; Zhu, X. “Toughness modification of hyperbranched polyester on epoxy asphalt”. Constr. Build. Mater 2016, 122, 473–477. DOI: 10.1016/j.conbuildmat.2016.06.087.
  • Li, C.; Gong, J.; Zhao, R.; Xi, Z.; Wang, Q.; Xie, H. “Laboratory performance of recycled polyethylene modified epoxy asphalt binders”. Int. J. Pavement Eng. 2022. DOI: 10.1080/10298436.2022.2101055.
  • Xue, Y.; Qian, Z. “Development and performance evaluation of epoxy asphalt concrete modified with mineral fiber”. Constr. Build. Mater 2016, 102, 378–383. DOI: 10.1016/j.conbuildmat.2015.10.157.
  • Wei, J.; Mao, X.; Xu, W.; Xi, C.; Yan, S.; Sun, T.; Hu, X.; Wang, Y.; Chi, F. “Experimental research on the effect of fiberglass on the performance of epoxy asphalt concrete”. Sustainability 2022, 14, 14724. DOI: 10.3390/su142214724.
  • Wang, X.; Wu, R.; Zhang, L. “Development and performance evaluation of epoxy asphalt concrete modified with glass fibre”. Road Mater. Pavement Des 2019, 20, 715–726. DOI: 10.1080/14680629.2017.1413006.
  • Sun, Y.; Han, X.; Su, W.; Gong, J.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. “Mechanical and bonding properties of pristine montmorillonite reinforced epoxy asphalt bond coats”. Polym. Compos 2020, 41, 3034–3042. DOI: 10.1002/pc.25595.
  • Sun, Y.; Zhang, Y.; Xu, K.; Xu, W.; Yu, D.; Zhu, L.; Xie, H.; Cheng, R. “Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes”. J. Appl. Polym. Sci 2015, 132, 41694.
  • Sun, Y.; Liu, Y.; Jiang, Y.; Xu, K.; Xi, Z.; Xie, H. “Thermal and mechanical properties of natural fibrous nanoclay reinforced epoxy asphalt adhesives”. Int. J. Adhes. Adhes 2018, 85, 308–314. DOI: 10.1016/j.ijadhadh.2018.07.005.
  • Zhao, R.; Jing, F.; Li, C.; Wang, R.; Xi, Z.; Cai, J.; Wang, Q.; Xie, H. “Phase-separated microstructures and viscosity-time behavior of graphene nanoplatelet modified warm-mix epoxy asphalt binders”. Mater. Struct 2022, 55, 248. DOI: 10.1617/s11527-022-02077-6.
  • Jing, F.; Wang, R.; Zhao, R.; Li, C.; Cai, J.; Ding, G.; Wang, Q.; Xie, H. “Enhancement of bonding and mechanical performance of epoxy asphalt bond coats with graphene nanoplatelets”. Polymers (Basel) 2023, 15, 412. DOI: 10.3390/polym15020412.
  • Zhang, L.; Zhang, F.; Huang, K.; Zhou, S.; Guo, Y. “Preparation and performance of graphene nanoplatelets-modified epoxy asphalt”. J. Perform. Constr. Facil 2021, 35, 04021083. DOI: 10.1061/(ASCE)CF.1943-5509.0001661.
  • Si, J.; Wang, J.; Li, Y.; Ma, J.; Ruan, W.; Yu, X.; Jiang, R. “Enhanced mechanical performances of epoxy asphalt adhesives modified by graphene oxide”. Road Mater. Pavement Des 2023, 24, 1050–1064. DOI: 10.1080/14680629.2022.2060124.
  • Zhao, R.; Jing, F.; Li, C.; Wang, R.; Xi, Z.; Cai, J.; Wang, Q.; Xie, H. “Viscosity-curing time behavior, viscoelastic properties, and phase separation of graphene oxide/epoxy asphalt composites”. Polym. Compos 2022, 43, 5454–5464. DOI: 10.1002/pc.26848.
  • Zhang, J.; Wang, R.; Zhao, R.; Jing, F.; Li, C.; Wang, Q.; Xie, H. “Graphene oxide-modified epoxy asphalt bond coats with enhanced bonding properties”. Materials 2022, 15, 6846. DOI: 10.3390/ma15196846.
  • Zhang, F.; Liu, X.; Zhang, L.; Zhou, S.; Huang, K. “Preparation and properties of epoxy asphalt modified by biomimetic graphene oxide nanocomposites”. J. Mater. Civ. Eng 2023, 35, 04022392. DOI: 10.1061/(ASCE)MT.1943-5533.0004569.
  • Si, J.; Shao, X.; Li, J.; Ma, H.; Wang, J.; Ruan, W.; Yu, X. “Exploiting graphene oxide as a potential additive to improve the performance of cold-mixed epoxy asphalt binder”. J. Vinyl Addit. Technol 2023, 29, 482–492. DOI: 10.1002/vnl.21996.
  • Wang, D.; Zhang, F.; Huang, K.; Zhang, L. “Study on preparation and performance of advanced nano-modified epoxy asphalt”. J. Appl. Polym. Sci 2023, 140, e53688.
  • Gong, J.; Liu, Y.; Jiang, Y.; Wang, Q.; Xi, Z.; Cai, J.; Xie, H. “Performance of epoxy asphalt binder containing warm-mix asphalt additive”. Int. J. Pavement Eng 2021, 22, 223–232. DOI: 10.1080/10298436.2019.1597272.
  • Zhang, Y.; Pan, X.; Sun, Y.; Xu, W.; Pan, Y.; Xie, H.; Cheng, R. “Flame retardancy, thermal, and mechanical properties of mixed flame retardant modified epoxy asphalt binders”. Constr. Build. Mater 2014, 68, 62–67. DOI: 10.1016/j.conbuildmat.2014.06.028.
  • Jiang, Y.; Han, X.; Gong, J.; Xi, Z.; Cai, J.; Wang, Q.; Ding, G.; Xie, H. “Laboratory investigation of epoxy asphalt binder modified by brominated SBS”. Constr. Build. Mater 2019, 228, 116733. DOI: 10.1016/j.conbuildmat.2019.116733.
  • Chen, R.; Gong, J.; Jiang, Y.; Wang, Q.; Xi, Z.; Xie, H. “Halogen-free flame retarded cold-mix epoxy asphalt binders: rheological, thermal and mechanical characterization”. Constr. Build. Mater 2018, 186, 863–870. DOI: 10.1016/j.conbuildmat.2018.08.018.
  • Zhang, J.; Wang, Y.; Wang, X.; Ding, G.; Pan, Y.; Xie, H.; Chen, Q.; Cheng, R. “Effects of amino- functionalized carbon nanotubes on the properties of amine- terminated butadiene- acrylonitrile rubber- toughened epoxy resins”. J. Appl. Polym. Sci 2014, 131, 40472.
  • Qiu, S.; Wang, Y.; Wang, C.; Yuan, Z.; Huang, Y. a.; Xie, H.; Cheng, R. “Isothermal curing behaviors of epoxy/graphite oxides nanocomposites”. Acta Polym. Sin 2012, 012, 25–32. DOI: 10.3724/SP.J.1105.2012.11028.
  • Han, X.; Su, W.; Gong, J.; Xi, Z.; Zhang, J.; Cai, J.; Wang, Q.; Xie, H. “Microstructure and dynamic mechanical properties epoxy/asphaltene composites”. J. Therm. Anal. Calorim 2022, 147, 2209–2219. DOI: 10.1007/s10973-021-10689-3.
  • Sun, Y.; Xu, K.; Zhang, Y.; Zhang, J.; Chen, R.; Yuan, Z.; Xie, H.; Cheng, R. “Organic montmorillonite reinforced epoxy mortar binders”. Constr. Build. Mater 2016, 107, 378–384. DOI: 10.1016/j.conbuildmat.2016.01.012.
  • Zhang, Y.; Sun, Y.; Xu, K.; Yuan, Z.; Zhang, J.; Chen, R.; Xie, H.; Cheng, R. “Brucite modified epoxy mortar binders: flame retardancy, thermal and mechanical characterization”. Constr. Build. Mater 2015, 93, 1089–1096. DOI: 10.1016/j.conbuildmat.2015.05.037.
  • Xie, H.; Liu, B.; Yang, H.; Wang, Z.; Shen, J.; Cheng, R. “Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4 '-diaminodiphenylmethane/4,4 '-diaminodiphenylsulfone epoxy composites”. J. Appl. Polym. Sci 2006, 100, 295–298. DOI: 10.1002/app.23106.
  • Liu, Q.; Wang, D.; Li, Z.; Li, Z.; Peng, X.; Liu, C.; Zhang, Y.; Zheng, P. “Recent developments in the flame-retardant system of epoxy resin”. Materials 2020, 13, 2145. DOI: 10.3390/ma13092145.
  • Zhang, H.; Yu, J.; Zhu, C. Flame retardants in bitumens and nanocomposites. In Flame Retardants: Polymer Blends, Composites and Nanocomposites; Visakh, P. M. and Arao, Y. Eds.; Springer: Cham, Switzerland, 2015 pp. 167–186
  • Qiu, J.; Yang, T.; Wang, X.; Wang, L.; Zhang, G. “Review of the flame retardancy on highway tunnel asphalt pavement”. Constr. Build. Mater 2019, 195, 468–482. DOI: 10.1016/j.conbuildmat.2018.11.034.
  • Jagtap, S. D.; Tambe, S. P.; Choudhari, R. N.; Mallik, B. P. “Mechanical and anticorrosive properties of non toxic coal-tar epoxy alternative coating”. Prog. Org. Coat 2014, 77, 395–402. DOI: 10.1016/j.porgcoat.2013.11.003.
  • Sun, Y.; Gong, J.; Liu, Y.; Jiang, Y.; Xi, Z.; Cai, J.; Xie, H. “Viscous, damping, and mechanical properties of epoxy asphalt adhesives containing different penetration-grade asphalts”. J. Appl. Polym. Sci 2019, 136, 47027. DOI: 10.1002/APP.47027.
  • Cheng, L.; Zhang, L.; Zhang, F.; Zhang, D.; Ma, Y. “Evaluation of the effects of asphalt binder aging degree on the curing, compatibility, and mechanical behaviors of epoxy asphalt binders”. Constr. Build. Mater 2023, 377, 131131. DOI: 10.1016/j.conbuildmat.2023.131131.
  • Bayer, O.; Siefken, W.; Rinke, H.; Orthner, L.; Schild, H.; Farben, I. Ed.: DRP,1937.
  • Kaur, R.; Singh, P.; Tanwar, S.; Varshney, G.; Yadav, S. “Assessment of bio-based polyurethanes: perspective on applications and bio-degradation”. Macromol 2022, 2, 284–314. DOI: 10.3390/macromol2030019.
  • Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. “Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges”, Angew. Chem. Int. Ed. Engl. 2013, 52, 9422–9441. DOI: 10.1002/anie.201302766.
  • Li, X.; Li, J.; Wang, J.; Yuan, J.; Jiang, F.; Yu, X.; Xiao, F. “Recent applications and developments of polyurethane materials in pavement engineering”. Constr. Build. Mater 2021, 304, 124639. DOI: 10.1016/j.conbuildmat.2021.124639.
  • Wang, C.; Huang, S.; Chen, Q.; Ji, X.; Duan, K. “Materials, preparation, performances and mechanism of polyurethane modified asphalt and its mixture: a systematic review”. J. Road Eng 2023, 3, 16–34. DOI: 10.1016/j.jreng.2023.01.002.
  • Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C. “Non-isocyanate polyurethanes: from chemistry to applications”. RSC Adv 2013, 3, 4110–4129. DOI: 10.1039/c2ra21938g.
  • Caraculacu, A. A.; Coseri, S. “Isocyanates in polyaddition processes. structure and reaction mechanisms”. Prog. Polym. Sci 2001, 26, 799–851. DOI: 10.1016/S0079-6700(00)00033-2.
  • Ratna, D. Chemistry and general applications of thermoset resins. In Recent Advances and Applications of Thermoset Resins (2nd ed.); Ratna, D. Ed.; Elsevier: Amsterdam, Netherlands, 2022, pp. 1–172
  • Howarth, G. A. “Polyurethanes, polyurethane dispersions and polyureas: past, present and future”. Surf. Coat. Int.: Part B 2003, 86, 111–118. DOI: 10.1007/BF02699621.
  • Yu, R.; Zhu, X.; Zhou, X.; Kou, Y.; Zhang, M.; Fang, C. “Rheological properties and storage stability of asphalt modified with nanoscale polyurethane emulsion”. Pet. Sci. Technol 2018, 36, 85–90. DOI: 10.1080/10916466.2017.1405028.
  • Carrera, V.; Cuadri, A. A.; García-Morales, M.; Partal, P. “Influence of the prepolymer molecular weight and free isocyanate content on the rheology of polyurethane modified bitumens”. Eur. Polym. J 2014, 57, 151–159. DOI: 10.1016/j.eurpolymj.2014.05.013.
  • Gong, X.; Liu, Q.; Wan, P.; Chen, S.; Wang, H.; Wu, J.; Wu, S. “A Comparative study of the properties CO2-based polyurethane modified asphalts prepared by prepolymer and in-situ polymerization methods”. Constr. Build. Mater 2023, 364, 129958. DOI: 10.1016/j.conbuildmat.2022.129958.
  • Sun, M.; Zheng, M.; Qu, G.; Yuan, K.; Bi, Y.; Wang, J. “Performance of polyurethane modified asphalt and its mixtures”. Constr. Build. Mater 2018, 191, 386–397. DOI: 10.1016/j.conbuildmat.2018.10.025.
  • Ban, X.; Zhang, Z.; Chang, P.; Zhang, S.; Liu, H.; Liang, Y.; Chen, Y. “The performance and distribution of polyurethane-modified asphalt that exhibits different molecular weights”. Sustainability 2023, 15, 6627. DOI: 10.3390/su15086627.
  • Liu, H.; Zhang, Z.; Zhu, Y.; Sun, J.; Wang, L.; Huang, T.; Chen, L. “Modification of asphalt using polyurethanes synthesized with different isocyanates”. Constr. Build. Mater 2022, 327, 126959. DOI: 10.1016/j.conbuildmat.2022.126959.
  • Li, Z.; Yang, F.; Yuan, J.; Cong, L.; Yu, M. “Study on preparation and pavement performance of polyurethane modified asphalt based on in-situ synthesis method”. Constr. Build. Mater 2021, 309, 125196. DOI: 10.1016/j.conbuildmat.2021.125196.
  • Liu, T.; Guo, N.; Jin, X.; Tan, Y.; You, Z.; Cui, S.; Chu, Z.; Fang, C. “Thermoregulation, rheological properties and modification mechanism of asphalt modified with PUSSPCMs”. Constr. Build. Mater 2023, 372, 130763. DOI: 10.1016/j.conbuildmat.2023.130763.
  • Yang, T.; He, Z.; Huang, G.; Zhao, Y.; Fu, J.; Xiang, H.; Zhou, Y. “Study on materials composition and process parameters of polyurethane-modified asphalt synthesized in-situ by the one-shot process”. Constr. Build. Mater 2023, 374, 130661. DOI: 10.1016/j.conbuildmat.2023.130661.
  • Zhao, Y.; Gong, X.; Liu, Q. “Research on rheological properties and modification mechanism of waterborne polyurethane modified bitumen”. Constr. Build. Mater 2023, 371, 130775. DOI: 10.1016/j.conbuildmat.2023.130775.
  • Gallu, R.; Méchin, F.; Gérard, J.-F.; Dalmas, F. “Influence of the chain extender of a segmented polyurethane on the properties of polyurethane-modified asphalt blends”. Constr. Build. Mater 2022, 328, 127061. DOI: 10.1016/j.conbuildmat.2022.127061.
  • Zhang, Z.; Sun, J.; Jia, M.; Ban, X.; Wang, L.; Chen, L.; Huang, T.; Liu, H. “Effects of polyurethane thermoplastic elastomer on properties of asphalt binder and asphalt mixture”. J. Mater. Civ. Eng 2021, 33, 04020477. DOI: 10.1061/(ASCE)MT.1943-5533.0003591.
  • Fang, J.; Tu, J. “Effect of ultraviolet (UV) aging on rheology properties and microstructure of polyurethane (PU) modified asphalt”. Mater. Res. Express 2019, 6, 125318. DOI: 10.1088/2053-1591/ab558f.
  • Huang, T.; Zhang, Z.; Wang, L.; Sun, J.; Wang, Z.; Liu, H.; Chen, L. “Study on the compatibility between polyurethane and asphalt based on experiment and molecular dynamics simulation, case study”. Constr. Mater 2022, 17, e01424. DOI: 10.1016/j.cscm.2022.e01424.
  • Hao, H.; Zhang, A.; Cheng, Y.; Cong, P. “The modification mechanisms of silane coupling agent (SCA) on the physical properties of thermosetting polyurethane asphalt binder (PUAB)”. Constr. Build. Mater 2022, 350, 128836. DOI: 10.1016/j.conbuildmat.2022.128836.
  • Yang, F.; Cong, L.; Li, Z.; Yuan, J.; Guo, G.; Tan, L. “Study on preparation and performance of a thermosetting polyurethane modified asphalt binder for bridge deck pavements”. Constr. Build. Mater 2022, 326, 126784. DOI: 10.1016/j.conbuildmat.2022.126784.
  • Yang, F.; Gong, H.; Cong, L.; Shi, J.; Guo, G.; Mei, Z. “Investigating on polymerization process and interaction mechanism of thermosetting polyurethane modified asphalt”. Constr. Build. Mater 2022, 335, 127261. DOI: 10.1016/j.conbuildmat.2022.127261.
  • Jia, M.; Sha, A.; Lin, J.; Zhang, Z.; Qi, B.; Yuan, D. “Polyurethane asphalt binder: a promising candidate for steel bridge deck-paving material”. Int. J. Pavement Eng 2022, 23, 3920–3929. DOI: 10.1080/10298436.2021.1927028.
  • Zhang, Z.; Sun, J.; Jia, M.; Qi, B.; Zhang, H.; Lv, W.; Mao, Z.; Chang, P.; Peng, J.; Liu, Y. “Study on a thermosetting polyurethane modified asphalt suitable for bridge deck pavements: formula and properties”. Constr. Build. Mater 2020, 241, 118122. DOI: 10.1016/j.conbuildmat.2020.118122.
  • Zhang, Z.; Sun, J.; Wang, L.; Zhu, Y.; Liu, H.; Huang, T.; Huang, Z. “Laboratory investigation of PPG-TDI polyurethane–modified asphalt binders and mixtures”. J. Mater. Civ. Eng 2022, 34, 04022217. DOI: 10.1061/(ASCE)MT.1943-5533.0004367.
  • Cuadri, A. A.; García-Morales, M.; Navarro, F. J.; Partal, P. “Isocyanate-functionalized castor oil as a novel bitumen modifier”. Chem. Eng. Sci 2013, 97, 320–327. DOI: 10.1016/j.ces.2013.04.045.
  • Cuadri, A. A.; García-Morales, M.; Navarro, F. J.; Partal, P. “Processing of bitumens modified by a bio-oil-derived polyurethane”. Fuel 2014, 118, 83–90. DOI: 10.1016/j.fuel.2013.10.068.
  • Kazemi, M.; Mohammadi, A.; Goli, A.; Fini, E. “Introducing a sustainable bio-based polyurethane to enhance the healing capacity of bitumen”. J. Mater. Civ. Eng 2022, 34, 04021465. DOI: 10.1061/(ASCE)MT.1943-5533.0004102.
  • Kazemi, M.; Goli, A.; Mohammadi, A. “Efficacy of biobased polyurethane on bitumen self-healing”, Adv. Civil Eng. Mater 2022, 11, 221–234. DOI: 10.1520/ACEM20210078.
  • Kazemi, M.; Goli, A.; Nasimifar, M. “Evaluation of the self-healing performance of polyurethane-modified bitumen using bitumen bond strength (BBS) test and CT scan”. Int. J. Pavement Res. Technol 2021, 14, 168–173. DOI: 10.1007/s42947-020-0064-6.
  • Xia, L.; Cao, D.; Zhang, H.; Guo, Y. “Study on the classical and rheological properties of castor oil-polyurethane pre polymer (C-PU) modified asphalt”. Constr. Build. Mater 2016, 112, 949–955. DOI: 10.1016/j.conbuildmat.2016.02.207.
  • Meng, Y.; Zhan, L.; Hu, C.; Tang, Y.; Großegger, D.; Ye, X. “Research on modification mechanism and performance of an innovative bio-based polyurethane modified asphalt: a sustainable way to reducing dependence on petroleum asphalt”. Constr. Build. Mater 2022, 350, 128830. DOI: 10.1016/j.conbuildmat.2022.128830.
  • Peng, C.; Huang, S.; You, Z.; Xu, F.; You, L.; Ouyang, H.; Li, T.; Guo, C.; Ma, H.; Chen, P.; Dai, J. “Effect of a lignin-based polyurethane on adhesion properties of asphalt binder during UV aging process”. Constr. Build. Mater 2020, 247, 118547. DOI: 10.1016/j.conbuildmat.2020.118547.
  • Vural Kök, B.; Aydoğmuş, E.; Yilmaz, M.; Akpolat, M. “Investigation on the properties of new palm-oil-based polyurethane modified bitumen”. Constr. Build. Mater 2021, 289, 123152. DOI: 10.1016/j.conbuildmat.2021.123152.
  • Lyu, L.; Li, D.; Chen, Y.; Tian, Y.; Pei, J. “Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer”. Constr. Build. Mater 2021, 293, 123480. DOI: 10.1016/j.conbuildmat.2021.123480.
  • Lyu, L.; Wang, Z.; Ji, J.; Li, Y.; Wen, Y.; Zhang, J.; Li, R.; Chen, Z.; Pei, J. “Investigating rheological and healing properties of asphalt binder modified by disulfide-crosslinked poly(urea-urethane) elastomer”. Constr. Build. Mater 2022, 347, 128546. DOI: 10.1016/j.conbuildmat.2022.128546.
  • Shirzad, S.; Hassan, M.; Mohammad Louay, N. “Rheological and mechanical evaluation of polyurethane prepolymer-modified asphalt mixture with self-healing abilities”. J. Mater. Civ. Eng 2020, 32, 04020231. DOI: 10.1061/(ASCE)MT.1943-5533.0003307.
  • Shirzad, S.; Idris, I. I.; Hassan, M.; Mohammad, L. N. “Self-healing capability and mechanical properties of asphalt mixtures prepared with light-activated polyurethane prepolymer modified asphalt binder”. Transp. Res. Rec. 2023. DOI: 10.1177/03611981221138522.
  • Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes; iSmithers Rapra Publishing: Shrewsbury, UK, 2005.
  • Szycher, M. Szycher’s Handbook of Polyurethanes; Taylor & Francis Group: Boca Raton, FL, USA, 2013.
  • Wang, C.; Chen, X.; Xie, H.; Cheng, R. “Effects of carbon nanotube diameter and functionality on the properties of soy polyol-based polyurethane”. Compos. Part A-Appl. Sci. Manuf 2011, 42, 1620–1626. DOI: 10.1016/j.compositesa.2011.07.010.
  • Liu, W.; Xu, K.; Wang, C.; Qian, B.; Sun, Y.; Zhang, Y.; Xie, H.; Cheng, R. “Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites”. J. Therm. Anal. Calorim. 2016, 123, 2459–2468. DOI: 10.1007/s10973-015-4690-1.
  • Jin, X.; Sun, S.; Guo, N.; Huang, S.; You, Z.; Tan, Y. “Influence on polyurethane synthesis parameters upon the performance of base asphalt”. Front. Mater. 2021, 8, 656261. DOI: 10.3389/fmats.2021.656261.
  • Bukowski, A.; Grętkiewicz, J. “Polyurethane synthesis reactions in asphalts”. J. Appl. Polymer Sci 1982, 27, 1197–1204. DOI: 10.1002/app.1982.070270409.
  • Sun, M.; Jing, S.; Wu, H.; Zhong, J.; Yang, Y.; Zhu, Y.; Xu, Q. “Preparation scheme optimization of thermosetting polyurethane modified asphalt”. Polymers (Basel) 2023, 15, 2327. DOI: 10.3390/polym15102327.
  • Gallu, R.; Méchin, F.; Dalmas, F.; Gérard, J.-F.; Perrin, R.; Loup, F. “Rheology-morphology relationships of new polymer-modified bitumen based on thermoplastic polyurethanes (TPU)”. Constr. Build. Mater 2020, 259, 120404. DOI: 10.1016/j.conbuildmat.2020.120404.
  • Fink, J. K. Reactive Polymers: Fundamentals and Applications: A Concise Guide to Industrial Polymers; William Andrew: Oxford, UK, 2017.
  • Jia, M.; Zhang, Z.; Yang, N.; Qi, B.; Wang, W.; Huang, Z.; Sun, J.; Luo, F.; Huang, T. “Performance evaluation of thermosetting and thermoplastic polyurethane asphalt mixtures”. J. Mater. Civ. Eng 2022, 34, 04022097. DOI: 10.1061/(ASCE)MT.1943-5533.0004238.
  • Liu, H.; Zhang, Z.; Wang, Z.; Sun, J.; Wei, Y.; Zhang, D. “Preparation and properties of flame-retardant asphalt containing polyurethane and eco-friendly flame retardants”. Constr. Build. Mater 2023, 375, 130996. DOI: 10.1016/j.conbuildmat.2023.130996.
  • Yu, R.; Wang, Q.; Wang, W.; Xiao, Y.; Wang, Z.; Zhou, X.; Zhang, X.; Zhu, X.; Fang, C. “Polyurethane/graphene oxide nanocomposite and its modified asphalt binder: preparation, properties and molecular dynamics simulation”. Mater. Des 2021, 209, 109994. DOI: 10.1016/j.matdes.2021.109994.
  • Jia, M.; Zhang, Z.; Liu, H.; Peng, B.; Zhang, H.; Lv, W.; Zhang, Q.; Mao, Z. “The synergistic effect of organic montmorillonite and thermoplastic polyurethane on properties of asphalt binder”. Constr. Build. Mater 2019, 229, 116867. DOI: 10.1016/j.conbuildmat.2019.116867.
  • Xia, T.; Chen, X.; Xu, J.; Li, Y.; Zhang, A. “Influence of hydrophilic nanosilica premixing method on the property of isocyanate-based polymer modified bitumen”. Constr. Build. Mater 2021, 275, 122174. DOI: 10.1016/j.conbuildmat.2020.122174.
  • Motamedi, M.; Shafabakhsh, G.; Azadi, M. “Linking Fatigue response of asphalt binders, mastics, and asphalt concrete mixture modified by nano-silica and synthesized polyurethane”. Int. J. Damage Mech 2021, 30, 103–122. DOI: 10.1177/1056789520950766.
  • Awazhar, N. A.; Khairuddin, F. H.; Rahmad, S.; Fadzil, S. M.; Omar, H. A.; Md. Yusoff, N. I.; Badri, K. H. “Engineering and leaching properties of asphalt binders modified with polyurethane and cecabase additives for warm-mix asphalt application”. Constr. Build. Mater 2020, 238, 117699. DOI: 10.1016/j.conbuildmat.2019.117699.
  • Hong, Z.; Yan, K.; Wang, M.; Yuan, J.; Ge, D.; Liu, J. “The Laboratory performance of asphalt mixture with thermoplastic polyurethane (TPU) and amorphous poly alpha olefin (APAO) compound modified asphalt binder”. Constr. Build. Mater 2022, 349, 128742. DOI: 10.1016/j.conbuildmat.2022.128742.
  • Yan, W.; Ou, Y.; Xie, J.; Huang, T.; Peng, X. “Study on properties of bone glue/polyurethane composite modified asphalt and its mixture”. Materials 2021, 14, 3769. DOI: 10.3390/ma14143769.
  • Kim, H. H.; Mazumder, M.; Lee, S.-J.; Lee, M.-S. “Laboratory evaluation of sustainable pma binder containing styrene-isoprene-styrene (SIS) and thermoplastic polyurethane”. Sustainability 2020, 12, 10057. DOI: 10.3390/su122310057.
  • Yun, J.; Mazumder, M.; Na, I.-H.; Lee, M.-S.; Kim, H. H. “Evaluation of effect of thermoplastic polyurethane (TPU) on crumb rubber modified (CRM) asphalt binder”. Materials 2022, 15, 3824. DOI: 10.3390/ma15113824.
  • Zhao, Y.; Chen, M.; Wu, S.; Jiang, Q.; Xu, H.; Zhao, Z.; Lv, Y. “Effects of waterborne polyurethane on storage stability, rheological properties, and VOCs emission of crumb rubber modified asphalt”. J. Cleaner Prod 2022, 340, 130682. DOI: 10.1016/j.jclepro.2022.130682.
  • Li, Y.; Huang, G.; He, Y.; Xu, X.; Gao, S. “Effect of waterborne polyurethane on rheological properties of styrene-butadiene rubber emulsified asphalt”. J. Mater. Civ. Eng 2023, 35, 04022470. DOI: 10.1061/(ASCE)MT.1943-5533.0004645.
  • Yan, K.; Yuan, J.; Wang, M.; Ge, D.; Hong, Z. “Preparation process and performance of thermoplastic polyurethane/amorphous poly alpha olefin compound modified bitumen”. J. Cleaner Prod 2022, 352, 131562. DOI: 10.1016/j.jclepro.2022.131562.
  • Hao, H.; Chen, Z.; Cong, P.; Han, Z. “Rheological, chemical and short-term aging properties of waste polyurethane particles modified asphalt binder with or without SBS”. Constr. Build. Mater 2022, 357, 129363. DOI: 10.1016/j.conbuildmat.2022.129363.
  • Santana, J. S.; Cardoso, E. S.; Triboni, E. R.; Politi, M. J. “Polyureas versatile polymers for new academic and technological applications”. Polymers (Basel) 2021, 13, 4393. DOI: 10.3390/polym13244393.
  • Shojaei, B.; Najafi, M.; Yazdanbakhsh, A.; Abtahi, M.; Zhang, C. “A review on the applications of polyurea in the construction industry”. Polym. Adv. Technol 2021, 32, 2797–2812. DOI: 10.1002/pat.5277.
  • Peng, Q.; Sun, X.; Liu, Z.; Jin, J.; Yu, H.; Yin, Y. “Sprayed-polyurea-modified asphalt: optimal preparation parameters, rheological properties and thermal properties”. Coatings 2023, 13, 544. DOI: 10.3390/coatings13030544.
  • Sun, X.; Zhang, Y.; Peng, Q.; Yuan, J.; Cang, Z.; Lv, J. “Study on adaptability of rheological index of nano-PUA-modified asphalt based on geometric parameters of parallel plate”. Nanotechnol. Rev 2021, 10, 1801–1811. DOI: 10.1515/ntrev-2021-0106.
  • Sun, X.; Yuan, Z.; Huang, Z.; Xu, Q.; Zhu, Y.; Xu, X.; Yuan, J.; Liu, Z.; Zhang, Y.; Chen, Q. “Applying solution of spray polyurea elastomer in asphalt binder: feasibility analysis and DSR study based on the MSCR and LAS Tests”. Nanotechnol. Rev 2023, 12, 20220508. DOI: 10.1515/ntrev-2022-0508.
  • Sun, X.; Peng, Q.; Zhu, Y.; Jin, J.; Xu, J.; Yin, Y.; Ng, A. H.-M. “Modification and enhancing effect of spua material on asphalt binder: a study of viscoelastic properties and microstructure characterization”, Case Stud. Constr. Mater 2023, 18, e01781. DOI: 10.1016/j.cscm.2022.e01781.
  • Bartoli, M.; Rosi, L.; Frediani, M. Synthesis and applications of unsaturated polyester composites. In Unsaturated Polyester Resins; Thomas, S., Hosur, M. and Chirayil, C. J. Eds.; Elsevier: Amsterdam, Netherlands, 2019, pp. 579–598
  • Ellis, C. "Artificial resin from glycerol and the like"; Ellis Foster Company (NJ): US patent 1897977,1933.
  • Thomas, S.; Chirayil, C. J. Applications of Unsaturated Polyester Resins; Elsevier: Amsterdam, Netherlands, 2023.
  • Liu, C.; Wang, Z.; Huang, Y. a.; Xie, H.; Liu, Z.; Chen, Y.; Lei, W.; Hu, L.; Zhou, Y.; Cheng, R. “One-Pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method”. RSC Adv 2013, 3, 22380–22388. DOI: 10.1039/c3ra42549e.
  • Zhang, H.; Zhang, G.; Han, F.; Zhang, Z.; Lv, W. “A lab study to develop a bridge deck pavement using bisphenol a unsaturated polyester resin modified asphalt mixture”. Constr. Build. Mater 2018, 159, 83–98. DOI: 10.1016/j.conbuildmat.2017.10.126.
  • Ahmedzade, P.; Yilmaz, M. “Effect of polyester resin additive on the properties of asphalt binders and mixtures”. Constr. Build. Mater 2008, 22, 481–486. DOI: 10.1016/j.conbuildmat.2006.11.015.
  • GB/T 30598. General Specifications of Epoxy Asphalt Materials for Paving Roads and Bridges; Standards Press of China: Beijing, China, 2014.
  • JTG/T3364-02-2019. Specifications for Design and Construction of Pavement on Highway Steel Bridge; Ministry of Transport of People’s Republic of China: Beijing, China, 2019.
  • Hashem, M. D.; Rashwan, N. “The influence of resin modifiers on the performance of hot mix asphalt”. J. Eng. Sci 2013, 41, 867–885. DOI: 10.21608/jesaun.2013.114766.
  • Abdel Bary, E.; Farag, R.; Abdel-Monem, R. M.; Abo-Shanab, Z.; M Saleh, A. “Colloidal stability and dynamic mechanical properties of asphalt modified with unsaturated polyester prepared from waste polyethylene terephthalate”. Egypt. J. Chem 2019, 62, 2003–2017.
  • Abdel Bary, E. M.; Farag, R. K.; Ragab, A. A.; Abdel-Monem, R. M.; Abo-Shanab, Z. L.; Saleh, A. M. M. “Green asphalt construction with improved stability and dynamic mechanical properties”. Polym. Bull 2020, 77, 1729–1747. DOI: 10.1007/s00289-019-02821-z.
  • Zhang, G.; Zhang, H.; Bu, X.; Yang, H. “Laboratory study on performances of bimaleimide/unsaturated polyester resin modified asphalt”. Constr. Build. Mater 2018, 179, 576–586. DOI: 10.1016/j.conbuildmat.2018.05.210.
  • Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. “Performance evaluation of BDM/unsaturated polyester resin-modified asphalt mixture for application in bridge deck pavement”. Road Mater. Pavement Des 2022, 23, 684–700. DOI: 10.1080/14680629.2020.1828154.
  • Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. “Laboratory investigation on the properties of polyurethane/unsaturated polyester resin modified bituminous mixture”. Constr. Build. Mater 2020, 260, 119865. DOI: 10.1016/j.conbuildmat.2020.119865.
  • Hesse, W. Phenolic Resins, in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000.
  • Gardziella, A.; Pilato, L. A.; Knop, A. Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology; Springer: New York, NY, USA, 2000.
  • Pilato, L. Phenolic Resins: A Century of Progress; Springer: Heidelberg, Germany, 2010.
  • Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. “Effect of phenol-cresol-formaldehyde resin on adhesive and physico-mechanical properties of road bitumen”. Chem. Chem. Technol 2018, 12, 456–461. DOI: 10.23939/chcht12.04.456.
  • Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B. B.; Pyshyev, S. “Application of phenol-cresol-formaldehyde resin as an adhesion promoter for bitumen and asphalt concrete”. Road Mater. Pavement Des 2021, 22, 2906–2918. DOI: 10.1080/14680629.2020.1808518.
  • Andrade, J. R. M. d.; Oliveira, S. d N.; Soares, J. B.; Soares, S. d A. “The effect of cardanol-formaldehyde resin in the rheological properties of the asphalt binder”. Int. J. Civil Environ. Eng 2017, 17, 1–10.
  • Li, Y.; Lv, C. “Assessment of the effect of straw lignin-based synthetic resin as a modifier on the rheological properties of asphalt binder towards better utilization of straw biomass”, Multidiscip. Model. Mater. Struct 2023, 19, 707–727. DOI: 10.1108/MMMS-09-2022-0179.
  • Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of bitumen modified by phenol formaldehyde resins synthesized from different raw materials. In Proceedings of EcoComfort 2020; Springer: Cham, Switzerland, 2020 pp. 95–102
  • Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. “The selection of raw materials for the production of road bitumen modified by phenol-cresol-formaldehyde resins”. Pet. Coal 2018, 60, 1199–1206.
  • Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. “Obtaining and use adhesive promoters to bitumen from the phenolic fraction of coal tar”. Int. J. Adhes. Adhes 2022, 118, 103191. DOI: 10.1016/j.ijadhadh.2022.103191.
  • Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. “Modified phenol-formaldehyde resins and their application in bitumen-polymeric mixtures”. Chem. Chem. Technol 2013, 7, 279–287. DOI: 10.23939/chcht07.03.279.
  • Çubuk, M.; Gürü, M.; Çubuk, M. K.; Arslan, D. “Rheological properties and performance evaluation of phenol formaldehyde modified bitumen”. J. Mater. Civ. Eng. 2014, 26, 04014015. DOI: 10.1061/(ASCE)MT.1943-5533.0000889.
  • Cheng, P.; Li, Y.; Zhang, Z. “Effect of phenolic resin on the rheological and morphological characteristics of styrene-butadiene rubber-modified asphalt”. Materials 2020, 13, 5836. DOI: 10.3390/ma13245836.
  • Ming, L. Y.; Feng, C. P.; Siddig, E. A. A. “Effect of phenolic resin on the performance of the styrene-butadiene rubber modified asphalt”. Constr. Build. Mater 2018, 181, 465–473. DOI: 10.1016/j.conbuildmat.2018.06.076.
  • Cheng, P.; Li, Y.; Zhang, Z. “Effect of phenolic resin on the rheological, chemical, and aging properties of SBR-modified asphalt”. Int. J. Pavement Res. Technol 2021, 14, 421–427. DOI: 10.1007/s42947-020-0159-0.
  • Estevez, M. “Use of coupling agents to stabilize asphalt–rubber–gravel composite to improve its mechanical properties”. J. Cleaner Prod 2009, 17, 1359–1362. DOI: 10.1016/j.jclepro.2009.04.002.
  • Chopra, A.; Singh, S. “Major application and impact after modified bituminous with nitrile rubber and thermoset: an analysis”. Mater. Today:. Proc 2022, 51, 977–987. DOI: 10.1016/j.matpr.2021.07.021.
  • Chopra, A.; Singh, S.; Kanoungo, A.; Singh, G.; Gupta, N. K.; Sharma, S.; Joshi, S. K.; Eldin, S. M. “Multi-objective optimization of nitrile rubber and thermosets modified bituminous mix using desirability approach”. PLoS One 2023, 18, e0281418. DOI: 10.1371/journal.pone.0281418.
  • Sharma, M.; Chopra, E. A. “Comparative analysis of furan resin modified asphalt mix and conventional asphalt mix”. Int. J. Civil Eng. Technol 2019, 10, 1574–1582.
  • Bostancioğlu, M.; Oruç, Ş. “Effect of furfural-derived thermoset furan resin on the high-temperature performance of bitumen”. Road Mater. Pavement Des 2015, 16, 227–237. DOI: 10.1080/14680629.2014.990048.
  • Bostancioğlu, M.; Oruç, Ş. “Effect of activated carbon and furan resin on asphalt mixture performance”. Road Mater. Pavement Des 2016, 17, 512–525. DOI: 10.1080/14680629.2015.1092465.
  • Diem, H.; Matthias, G.; Wagner, R. A. Amino Resins, in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2010.
  • Kothari, J.; Iroh, J. O. “Self-healing poly(urea formaldehyde) microcapsules: synthesis and characterization”. Polymers (Basel) 2023, 15, 1668. DOI: 10.3390/polym15071668.
  • Wang, X.; Zhao, T. “Effects of parameters of the shell formation process on the performance of microencapsulated phase change materials based on melamine-formaldehyde”. Text. Res. J 2017, 87, 1848–1859. DOI: 10.1177/0040517516659382.
  • Nguon, O.; Lagugné-Labarthet, F.; Brandys, F. A.; Li, J.; Gillies, E. R. “Microencapsulation by in situ polymerization of amino resins”. Polym. Rev 2018, 58, 326–375. DOI: 10.1080/15583724.2017.1364765.
  • Li, J.; Ji, X.; Tang, Z.; Hu, Y.; Hua, W. “Preparation and evaluation of self-healing microcapsules for asphalt based on response surface optimization”. J. Appl. Polym. Sci 2022, 139, 51430.
  • Dan, H.-C.; Wen, X.; Chen, J.; Cao, W.; Jing, H. “A molecular dynamics approach to the interfacial characteristics between melamine formaldehyde resin and paving asphalts”. Constr. Build. Mater 2023, 365, 130051. DOI: 10.1016/j.conbuildmat.2022.130051.
  • Ma, E.; Chen, X.; Lai, J.; Kong, X.; Guo, C. “Self-healing of microcapsule-based materials for highway construction: a review”. J. Traffic Transp. Eng. (Engl. Ed) 2023, 10, 368–384. DOI: 10.1016/j.jtte.2023.02.003.
  • Abadeen, A. Z. U.; Hussain, A.; Sathish Kumar, V.; Murali, G.; Vatin, N. I.; Riaz, H. “Comprehensive self-healing evaluation of asphalt concrete containing encapsulated rejuvenator”. Materials 2022, 15, 3672. DOI: 10.3390/ma15103672.
  • Raquez, J. M.; Deléglise, M.; Lacrampe, M. F.; Krawczak, P. “Thermosetting (bio)materials derived from renewable resources: a critical review”. Prog. Polym. Sci 2010, 35, 487–509. DOI: 10.1016/j.progpolymsci.2010.01.001.
  • Xia, Y.; Quirino, R. L.; Larock, R. C. “Bio-based thermosetting polymers from vegetable oils”. J. Renew. Mater 2013, 1, 3–27. DOI: 10.7569/JRM.2012.634103.
  • Susan George, J.; Uthaman, A.; Reghunadhan, A.; Mayookh Lal, H.; Thomas, S.; Vijayan P, P. “Bioderived thermosetting polymers and their nanocomposites: current trends and future outlook”. Emergent Mater. 2022, 5, 3–27. DOI: 10.1007/s42247-022-00362-2.
  • Liu, C.; Dai, Y.; Wang, C.; Xie, H.; Zhou, Y.; Lin, X.; Zhang, L. “Phase-separation dominating mechanical properties of a novel tung-oil-based thermosetting polymer”. Ind. Crops Prod 2013, 43, 677–683. DOI: 10.1016/j.indcrop.2012.07.072.
  • Wang, C.; Ding, L.; He, M.; Wei, J.; Li, J.; Lu, R.; Xie, H.; Cheng, R. “Facile one-step synthesis of bio-based AESO resins”. Euro. J. Lipid Sci. & Tech 2016, 118, 1463–1469. DOI: 10.1002/ejlt.201500494.
  • den Braver-Sewradj, S. P.; van Spronsen, R.; Hessel, E. V. S. “Substitution of Bisphenol A: a review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances”. Crit. Rev. Toxicol 2020, 50, 128–147. DOI: 10.1080/10408444.2019.1701986.
  • Ng, F.; Couture, G.; Philippe, C.; Boutevin, B.; Caillol, S. “Bio-based aromatic epoxy monomers for thermoset materials”. Molecules 2017, 22, 149. DOI: 10.3390/molecules22010149.
  • Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.-P. “Biobased thermosetting epoxy: present and future”. Chem. Rev 2014, 114, 1082–1115. DOI: 10.1021/cr3001274.
  • Meier, M. A. R.; Metzger, J. O.; Schubert, U. S. “Plant oil renewable resources as green alternatives in polymer science”. Chem. Soc. Rev 2007, 36, 1788–1802. DOI: 10.1039/b703294c.
  • Voirin, C.; Caillol, S.; Sadavarte, N. V.; Tawade, B. V.; Boutevin, B.; Wadgaonkar, P. P. “Functionalization of cardanol: towards biobased polymers and additives”. Polym. Chem 2014, 5, 3142–3162. DOI: 10.1039/C3PY01194A.
  • Ding, C.; Matharu, A. S. “Recent developments on biobased curing agents: a review of their preparation and use”. ACS Sustainable Chem. Eng. 2014, 2, 2217–2236. DOI: 10.1021/sc500478f.
  • Baroncini, E. A.; Kumar Yadav, S.; Palmese, G. R.; Stanzione Iii, J. F. “Recent advances in bio-based epoxy resins and bio-based epoxy curing agents”. J. Appl. Polym. Sci 2016, 133, 44103. DOI: 10.1002/APP.44103.
  • Song, P.; Du, L.; Pang, J.; Jiang, G.; Shen, J.; Ma, Y.; Ren, S.; Li, S. “Preparation and properties of lignin-based vitrimer system containing dynamic covalent bonds for reusable and recyclable epoxy asphalt”. Ind. Crops Prod 2023, 197, 116498. DOI: 10.1016/j.indcrop.2023.116498.
  • Li, Y.; Luo, X.; Hu, S. Bio-Based Polyols and Polyurethanes; Springer: Cham, Switzerland, 2015.
  • Xu, K.; Jing, F.; Zhao, R.; Wang, C.; Wang, Q.; Xie, H. “Bio-based epoxy/polyurethane interpenetrating polymer networks (IPNs) derived from plant oils with tunable thermal and mechanical properties”. J. Therm. Anal. Calorim 2023, 148, 10093–10102. DOI: 10.1007/s10973-023-12368-x.
  • Reeb-Whitaker, C.; Whittaker, S. G.; Ceballos, D. M.; Weiland, E. C.; Flack, S. L.; Fent, K. W.; Thomasen, J. M.; Trelles Gaines, L. G.; Nylander-French, L. A. “Airborne isocyanate exposures in the collision repair industry and a comparison to occupational exposure limits”. J. Occup. Environ. Hyg 2012, 9, 329–339. DOI: 10.1080/15459624.2012.672871.
  • Wang, C.; Chen, X.; Chen, J.; Liu, C.; Xie, H.; Cheng, R. “Synthesis and characterization of novel polyurethane acrylates based on soy polyols”. J. Appl. Polym. Sci 2011, 122, 2449–2455. DOI: 10.1002/app.34364.
  • Wang, C.; Wang, Y.; Liu, W.; Yin, H.; Yuan, Z.; Wang, Q.; Xie, H.; Cheng, R. “Natural fibrous nanoclay reinforced soy polyol-based polyurethane”. Mater. Lett 2012, 78, 85–87. DOI: 10.1016/j.matlet.2012.03.067.
  • Wang, C.; Wu, Q.; Liu, F.; An, J.; Lu, R.; Xie, H.; Cheng, R. “Synthesis and characterization of soy polyol-based polyurethane nanocomposites reinforced with silylated palygorskite”. Appl. Clay Sci 2014, 101, 246–252. DOI: 10.1016/j.clay.2014.08.009.
  • Wang, C.; Zhang, Y.; Lin, L.; Ding, L.; Li, J.; Lu, R.; He, M.; Xie, H.; Cheng, R. “Thermal, mechanical, and morphological properties of functionalized graphene-reinforced bio-based polyurethane nanocomposites”. Euro. J. Lipid Sci. & Tech 2015, 117, 1940–1946. DOI: 10.1002/ejlt.201500029.
  • Morales-Cerrada, R.; Tavernier, R.; Caillol, S. “Fully bio-based thermosetting polyurethanes from bio-based polyols and isocyanates”. Polymers (Basel) 2021, 13, 1255. DOI: 10.3390/polym13081255.
  • Wang, C.; Dai, L.; Yang, Z.; Ge, C.; Li, S.; He, M.; Ding, L.; Xie, H. “Reinforcement of castor oil-based polyurethane with surface modification of attapulgite”. Polymers (Basel) 2018, 10, 1236. DOI: 10.3390/polym10111236.
  • Wang, C.; Ding, L.; Wu, Q.; Liu, F.; Wei, J.; Lu, R.; Xie, H.; Cheng, R. “Soy polyol-based polyurethane modified by raw and silylated palygorskite”. Ind. Crops Prod 2014, 57, 29–34. DOI: 10.1016/j.indcrop.2014.03.025.
  • Trovati, G.; Natali Suman, M. V.; Sanches, E. A.; Campelo, P. H.; Neto, R. B.; Neto, S. C.; Trovati, L. R. “Production and characterization of polyurethane castor oil (Ricinus communis) foam for nautical fender”. Polym. Test 2019, 73, 87–93. DOI: 10.1016/j.polymertesting.2018.11.010.
  • Sarika, P. R.; Nancarrow, P.; Khansaheb, A.; Ibrahim, T. “Bio-based alternatives to phenol and formaldehyde for the production of resins”. Polymers (Basel) 2020, 12, 2237. DOI: 10.3390/polym12102237.
  • Basafa, M.; Hawboldt, K. “A review on sources and extraction of phenolic compounds as precursors for bio-based phenolic resins”. Biomass Conv. Bioref 2023, 13, 4463–4475. DOI: 10.1007/s13399-021-01408-x.
  • Li, Y.; Lv, C.; Cheng, P.; Chen, Y.; Zhang, Z. “Application of bio-resin in road materials: rheological and chemical properties of asphalt binder modified by lignin-phenolic resin, case study”. Case Stud. Constr. Mater 2023, 18, e01989. DOI: 10.1016/j.cscm.2023.e01989.
  • Jiang, X.; Li, P.; Ding, Z.; Yue, L.; Li, H.; Bing, H.; Zhang, J. “Physical, chemical and rheological investigation and optimization design of asphalt binders partially replaced by bio-based resins”. Constr. Build. Mater 2022, 350, 128845. DOI: 10.1016/j.conbuildmat.2022.128845.
  • Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R. “Self-healing polymers and composites”. Annu. Rev. Mater. Res 2010, 40, 179–211. DOI: 10.1146/annurev-matsci-070909-104532.
  • Yang, Y.; Urban, M. W. “Self-healing polymeric materials”. Chem. Soc. Rev 2013, 42, 7446–7467. DOI: 10.1039/c3cs60109a.
  • Li, G.; Feng, X.; Meng, H. Overview of crack self-healing. In Recent Advances in Smart Self-Healing Polymers and Composites (2nd ed.); Li, G. and Feng, X. Eds.; Woodhead Publishing: Cambridge, MA, USA, 2022 pp. 1–26
  • Urdl, K.; Kandelbauer, A.; Kern, W.; Müller, U.; Thebault, M.; Zikulnig-Rusch, E. “Self-healing of densely crosslinked thermoset polymers—a critical review”. Prog. Org. Coat 2017, 104, 232–249. DOI: 10.1016/j.porgcoat.2016.11.010.
  • Zhang, M. Q.; Rong, M. Z.; Yin, T. Self-Healing Polymers and Polymer Composites; Wiley: Hoboken, NJ, USA, 2011.
  • Xu, S.; García, A.; Su, J.; Liu, Q.; Tabaković, A.; Schlangen, E. “Self-healing asphalt review: from idea to practice”. Adv. Mater. Interfaces 2018, 5, 1800536. DOI: 10.1002/admi.201800536.
  • Anupam, B. R.; Sahoo, U. C.; Chandrappa, A. K. “A methodological review on self-healing asphalt pavements”. Constr. Build. Mater 2022, 321, 126395. DOI: 10.1016/j.conbuildmat.2022.126395.
  • Gonzalez-Torre, I.; Norambuena-Contreras, J. “Recent advances on self-healing of bituminous materials by the action of encapsulated rejuvenators”. Constr. Build. Mater 2020, 258, 119568. DOI: 10.1016/j.conbuildmat.2020.119568.
  • Liu, Q.; Zhang, J.; Liu, W.; Guo, F.; Pei, J.; Zhu, C.; Zhang, W. “Preparation and characterization of self-healing microcapsules embedding waterborne epoxy resin and curing agent for asphalt materials”. Constr. Build. Mater 2018, 183, 384–394. DOI: 10.1016/j.conbuildmat.2018.06.185.
  • Xia, W.; Xu, Z.; Xu, T. “Self-healing behaviors and its effectiveness evaluations of fiber reinforced shape memory polyurethane/sbs modified asphalt mortar”, Case Stud. Constr. Mater 2023, 18, e01784. DOI: 10.1016/j.cscm.2022.e01784.
  • Shirzad, S.; Hassan, M. M.; Aguirre, M. A.; Mohammad, L. N.; Cooper, S.; Negulescu, I. I. “Rheological properties of asphalt binder modified with recycled asphalt materials and light-activated self-healing polymers”. Constr. Build. Mater 2019, 220, 187–195. DOI: 10.1016/j.conbuildmat.2019.05.189.
  • Zhou, X.; Sun, B.; Wu, S.; Zhang, X.; Liu, Q.; Xiao, Y. “Evaluation on self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane”. J. Wuhan Univ. Technol-Mat. Sci. Ed 2019, 34, 630–637. DOI: 10.1007/s11595-019-2097-8.
  • Sun, H.; Liu, W.; Wang, Y.; Chang, X.; Zhao, H.; Shi, S.; Xing, J.; Wu, D.; Zhang, J.; Zhang, W. “Evaluation method and influence law of UV-cured polyurethane on the self-healing performance of asphalt and asphalt mixtures”. Buildings 2023, 13, 1277. DOI: 10.3390/buildings13051277.
  • Dahlke, J.; Zechel, S.; Hager, M. D.; Schubert, U. S. “How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials”. Adv. Mater. Interfaces 2018, 5, 1800051. DOI: 10.1002/admi.201800051.
  • Yang, L.; Tao, L.; Zenglin, T.; Jianzhong, P.; Mingliang, Z.; Zhenguo, W. “Research on self-healing behavior of asphalt modified by polyurea elastomer containing dynamic disulfide/diselenide bond”. Eur. Polym. J 2023, 189, 111990. DOI: 10.1016/j.eurpolymj.2023.111990.
  • Ghosh, B.; Urban, M. W. “Self-repairing oxetane-substituted chitosan polyurethane networks”. Science 2009, 323, 1458–1460. DOI: 10.1126/science.1167391.
  • Yue, L.; Kuang, X.; Sun, X.; Qi, H. J. Recyclable thermoset polymers: beyond self-healing. In Recent Advances in Smart Self-Healing Polymers and Composites (2nd ed.); Li, G. and Feng, X. Eds.; Woodhead Publishing: Cambridge, MA, USA, 2022, pp. 483–511
  • Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. “Silica-like malleable materials from permanent organic networks”. Science 2011, 334, 965–968. DOI: 10.1126/science.1212648.
  • Alabiso, W.; Schlögl, S. “The impact of vitrimers on the industry of the future: chemistry, properties and sustainable forward-looking applications”. Polymers (Basel) 2020, 12, 1660. DOI: 10.3390/polym12081660.
  • Denissen, W.; Winne, J. M.; Du Prez, F. E. “Vitrimers: permanent organic networks with glass-like fluidity”. Chem. Sci. 2016, 7, 30–38. DOI: 10.1039/c5sc02223a.
  • Krishnakumar, B.; Sanka, R. V. S. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. “Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers”. Chem. Eng. J 2020, 385, 123820. DOI: 10.1016/j.cej.2019.123820.
  • Hayashi, M. “Implantation of recyclability and healability into cross-linked commercial polymers by applying the vitrimer concept”. Polymers (Basel) 2020, 12, 1322. DOI: 10.3390/polym12061322.
  • Jing, F.; Zhao, R.; Li, C.; Xi, Z.; Wang, Q.; Xie, H. “Influence of the epoxy/acid stoichiometry on the cure behavior and mechanical properties of epoxy vitrimers”. Molecules 2022, 27, 6335. DOI: 10.3390/molecules27196335.
  • Tarsi, G.; Tataranni, P.; Sangiorgi, C. “The challenges of using reclaimed asphalt pavement for new asphalt mixtures: a review”. Materials 2020, 13, 4052. DOI: 10.3390/ma13184052.
  • Lu, D. X.; Enfrin, M.; Boom, Y. J.; Giustozzi, F. “Future recyclability of hot mix asphalt containing recycled plastics”. Constr. Build. Mater 2023, 368, 130396. DOI: 10.1016/j.conbuildmat.2023.130396.
  • Alamri, M.; Lu, Q. “Investigation on the inclusion of reclaimed diluted epoxy asphalt pavement materials into hot mix asphalt”. Constr. Build. Mater 2022, 361, 129710. DOI: 10.1016/j.conbuildmat.2022.129710.
  • Yi, J.; Zhou, W.; Pei, Z.; Feng, D. “Synthesis strategy and basic validation of recyclable epoxy asphalt”. Transp. Res. Rec 2023, 2677, 69–80. DOI: 10.1177/03611981231158315.
  • Zhou, W.; Yi, J.; Pei, Z.; Xie, S.; Feng, D. “Preliminary design of recyclable epoxy asphalt: regeneration feasibility analysis and environmental impact assessment”. J. Appl. Polym. Sci 2022, 139, 52349. DOI: 10.1002/app.52349.
  • Thompson, D. G.; Osborn, J. C.; Kober, E. M.; Schoonover, J. R. “Effects of hydrolysis-induced molecular weight changes on the phase separation of a polyester polyurethane”. Polym. Degrad. Stab 2006, 91, 3360–3370. DOI: 10.1016/j.polymdegradstab.2006.05.019.
  • Acosta Ortiz, R. Hydrolytic stability of unsaturated polyesters. In Applications of Unsaturated Polyester Resins; Thomas, S. and Chirayil, C. J. Eds.; Elsevier: Amsterdam, Netherlands, 2023, pp. 91–103
  • Wei, K.; Cao, X.; Wu, Y.; Cheng, Z.; Tang, B.; Shan, B. “Dynamic chemistry approach for self-healing of polymer-modified asphalt: a state-of-the-art review”. Constr. Build. Mater 2023, 403, 133128. DOI: 10.1016/j.conbuildmat.2023.133128.
  • Zarras, P.; Soucek, M. D.; Tiwari, A. Handbook of Waterborne Coatings; Elsevier: Amsterdam, Netherlands, 2020.
  • Wei, K.; Wu, Y.; Cao, X.; Yang, X.; Tang, B.; Shan, B. “Dual dynamic bonds approach for polyurethane recycling and self-healing of emulsified asphalt”. Sci. Total Environ 2023, 885, 163915. DOI: 10.1016/j.scitotenv.2023.163915.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.