502
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A Comprehensive Review on Carbon Nanotubes Based Smart Nanocomposites Sensors for Various Novel Sensing Applications

, & ORCID Icon
Pages 575-638 | Received 06 Apr 2023, Accepted 27 Dec 2023, Published online: 31 Jan 2024

References

  • Koo, G. M.; Tallman, T. N. Higher-Order Resistivity-Strain Relations for Self-Sensing Nanocomposites Subject to General Deformations. Compos. B Eng. 2020, 190, 107907. DOI: 10.1016/j.compositesb.2020.107907.
  • Sierra-Chi, C. A.; Aguilar-Bolados, H.; López-Manchado, M. A.; Verdejo, R.; Cauich-Rodríguez, J. V.; Avilés, F. Flexural Electromechanical Properties of Multilayer Graphene Sheet/Carbon Nanotube/Vinyl Ester Hybrid Nanocomposites. Compos. Sci. Technol. 2020, 194, 108164. DOI: 10.1016/j.compscitech.2020.108164.
  • Moradi-Dastjerdi, R.; Rashahmadi, S.; Meguid, S. A. Electro-Mechanical Performance of Smart Piezoelectric Nanocomposite Plates Reinforced by Zinc Oxide and Gallium Nitride Nanowires. Mech. Based Des. Struct. Mach. 2020, 50, 1954–1967. DOI: 10.1080/15397734.2020.1766496.
  • Jang, S. H.; Li, L. Y. Self-Sensing Carbon Nanotube Composites Exposed to Glass Transition Temperature. Materials 2020, 13, 259. DOI: 10.3390/ma13020259.
  • Mahmoodi, M. J.; Rajabi, Y.; Khodaiepour, B. Electro-Thermo-Mechanical Responses of Laminated Smart Nanocomposite Moderately Thick Plates Containing Carbon Nanotube–a Multi-Scale Modeling. Mech. Mater. 2020, 141, 103247. DOI: 10.1016/j.mechmat.2019.103247.
  • Lv, C.; Wang, J.; Li, Z.; Zhao, K.; Zheng, J. Degradable, Reprocessable, Self-Healing PDMS/CNTs Nanocomposite Elastomers with High Stretchability and Toughness Based on Novel Dual-Dynamic Covalent Sacrificial System. Compos. B Eng. 2019, 177, 107270. DOI: 10.1016/j.compositesb.2019.107270.
  • Wu, T.; Chen, B. Autonomous Self-Healing Multiwalled Carbon Nanotube Nanocomposites with Piezoresistive Effect. RSC Adv. 2017, 7, 20422–20429.
  • Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; Wei, R.; Subramania, A.; Guo, Z. Electromagnetic Interference Shielding Polymers and Nanocomposites-a Review. Polym. Rev. 2019, 59, 280–337.
  • Avilés, F.; Oliva‐Avilés, A. I.; Cen‐Puc, M. Piezoresistivity, Strain, and Damage Self‐Sensing of Polymer Composites Filled with Carbon Nanostructures. Adv. Eng. Mater. 2018, 20, 1701159. DOI: 10.1002/adem.201701159.
  • Cui, Z.; Poblete, F. R.; Zhu, Y. Tailoring the Temperature Coefficient of Resistance of Silver Nanowire Nanocomposites and Their Application as Stretchable Temperature Sensors. ACS Appl. Mater. Interfaces 2019, 11, 17836–17842.
  • Monea, B. F.; Ionete, E. I.; Spiridon, S. I.; Ion-Ebrasu, D.; Petre, E. Carbon Nanotubes and Carbon Nanotube Structures Used for Temperature Measurement. Sensors 2019, 19, 2464. DOI: 10.3390/s19112464.
  • Rao, R.; Sindu, B. S.; Sasmal, S. Synthesis, Design and Piezo-Resistive Characteristics of Cementitious Smart Nanocomposites with Different Types of Functionalized MWCNTs under Long Cyclic Loading. Cem. Concr. Compos. 2020, 108, 103517. DOI: 10.1016/j.cemconcomp.2020.103517.
  • Rao, R. K.; Sasmal, S. Smart Nano-Engineered Cementitious Composite Sensors for Vibration-Based Health Monitoring of Large Structures. Sens. Actuators, A 2020, 311, 112088. DOI: 10.1016/j.sna.2020.112088.
  • Najafishad, S.; Manesh, H. D.; Zebarjad, S. M.; Hataf, N.; Mazaheri, Y. Production and Investigation of Mechanical Properties and Electrical Resistivity of Cement Matrix Nanocomposites with Graphene Oxide and Carbon Nanotube Reinforcements. ArchivCivMechEng. 2020, 20, 57. DOI: 10.1007/s43452-020-00059-5.
  • Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, Skin‐Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698.
  • Li, T.; Li, J.; Zhong, A.; Han, F.; Sun, R.; Wong, C.-P.; Niu, F.; Zhang, G.; Jin, Y. A Flexible Strain Sensor Based on CNTs/PDMS Microspheres for Human Motion Detection. Sens. Actuators, A 2020, 306, 111959. DOI: 10.1016/j.sna.2020.111959.
  • Rdest, M.; Janas, D. Carbon Nanotube Wearable Sensors for Health Diagnostics. Sensors 2021, 21, 5847. DOI: 10.3390/s21175847.
  • Tian, X.; Zhang, S.; Ma, Y. Q.; Luo, Y. L.; Xu, F.; Chen, Y. S. Preparation and Vapor-Sensitive Properties of Hydroxyl-Terminated Polybutadiene Polyurethane Conductive Polymer Nanocomposites Based on Polyaniline-Coated Multiwalled Carbon Nanotubes. Nanotechnology 2020, 31, 195504.
  • Vertuccio, L.; Guadagno, L.; Spinelli, G.; Lamberti, P.; Tucci, V.; Russo, S. Piezoresistive Properties of Resin Reinforced with Carbon Nanotubes for Health-Monitoring of Aircraft Primary Structures. Compos. B Eng. 2016, 107, 192–202. DOI: 10.1016/j.compositesb.2016.09.061.
  • Abbasi, S.; Peerzada, M. H.; Nizamuddin, S.; Mubarak, N. M. Functionalized Nanomaterials for the Aerospace, Vehicle, and Sports Industries. In Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier: Amsterdam, 2020; pp 795–825.
  • Yao, G.; Xu, L.; Cheng, X.; Li, Y.; Huang, X.; Guo, W.; Liu, S.; Wang, Z. L.; Wu, H. Bioinspired Triboelectric Nanogenerators as Self‐Powered Electronic Skin for Robotic Tactile Sensing. Adv. Funct. Mater. 2020, 30, 1907312. DOI: 10.1002/adfm.201907312.
  • Andrews, J. B.; Cardenas, J. A.; Lim, C. J.; Noyce, S. G.; Mullett, J.; Franklin, A. D. Fully Printed and Flexible Carbon Nanotube Transistors for Pressure Sensing in Automobile Tires. IEEE Sens. J. 2018, 18, 7875–7880.
  • Iqbal, A.; Saeed, A.; Ul-Hamid, A. A Review Featuring the Fundamentals and Advancements of Polymer/CNT Nanocomposite Application in Aerospace Industry. Polym. Bull. 2020, 78, 539–557. DOI: 10.1007/s00289-019-03096-0.
  • Agis, D.; Pozo, F. Vibration-Based Structural Health Monitoring Using Piezoelectric Transducers and Parametric t-SNE. Sensors 2020, 20, 1716. DOI: 10.3390/s20061716.
  • Rao, R.; Sasmal, S. Detection of Flaw in Steel Anchor-Concrete Composite Using High-Frequency Wave Characteristics. Steel Compos. Struct. 2019, 31, 341–359.
  • Zhou, Y.; Liu, D.; Li, D.; Zhao, Y.; Zhang, M.; Zhang, W. Review on Structural Health Monitoring in Metal Aviation Based on Fiber Bragg Grating Sensing Technology. 2020 Prognostics and Health Management Conference (PHM-Besançon); IEEE, 2020; pp 97–102. DOI: 10.1109/PHM-Besancon49106.2020.00022.
  • Farreras-Alcover, I.; Chryssanthopoulos, M. K.; Andersen, J. E. Data-Based Models for Fatigue Reliability of Orthotropic Steel Bridge Decks Based on Temperature, Traffic and Strain Monitoring. Int. J. Fatigue 2017, 95, 104–119. DOI: 10.1016/j.ijfatigue.2016.09.019.
  • Kralovec, C.; Schagerl, M. Review of Structural Health Monitoring Methods regarding a Multi-Sensor Approach for Damage Assessment of Metal and Composite Structures. Sensors 2020, 20, 826. DOI: 10.3390/s20030826.
  • Mun, S.; Park, Y.; Lee, Y. E. K.; Sung, M. M. Highly Sensitive Ammonia Gas Sensor Based on Single-Crystal Poly (3-Hexylthiophene)(P3HT) Organic Field Effect Transistor. Langmuir 2017, 33, 13554–13560.
  • Xu, K.; Zhou, R.; Takei, K.; Hong, M. Toward Flexible Surface‐Enhanced Raman Scattering (SERS) Sensors for Point‐of‐Care Diagnostics. Adv. Sci. 2019, 6, 1900925.
  • Liu, S.; Huo, Y.; Bai, J.; Ning, B.; Peng, Y.; Li, S.; Han, D.; Kang, W.; Gao, Z. Rapid and Sensitive Detection of Prostate-Specific Antigen via Label-Free Frequency Shift Raman of Sensing Graphene. Biosens. Bioelectron. 2020, 158, 112184.
  • Hohimer, C. J.; Petrossian, G.; Ameli, A.; Mo, C.; Pötschke, P. 3D Printed Conductive Thermoplastic Polyurethane/Carbon Nanotube Composites for Capacitive and Piezoresistive Sensing in Soft Pneumatic Actuators. Addit. Manuf. 2020, 34, 101281. DOI: 10.1016/j.addma.2020.101281.
  • Han, M.; Lee, J.; Kim, J. K.; An, H. K.; Kang, S. W.; Jung, D. Highly Sensitive and Flexible Wearable Pressure Sensor with Dielectric Elastomer and Carbon Nanotube Electrodes. Sens. Actuators, A 2020, 305, 111941. DOI: 10.1016/j.sna.2020.111941.
  • Davis, A. M.; Mirsayar, M. M.; Hartl, D. J. A Novel Structural Health Monitoring Approach in Concrete Structures Using Embedded Magnetic Shape Memory Alloy Components. Constr. Build. Mater. 2021, 311, 125212. DOI: 10.1016/j.conbuildmat.2021.125212.
  • Dutta, C.; Kumar, J.; Das, T. K.; Sagar, S. P. Recent Advancements in the Development of Sensors for the Structural Health Monitoring (SHM) at High-Temperature Environment: A Review. IEEE Sens. J. 2021, 21, 15904–15916.
  • Chakraborty, J.; Wang, X.; Stolinski, M. Damage Detection in Multiple RC Structures Based on Embedded Ultrasonic Sensors and Wavelet Transform. Buildings 2021, 11, 56. DOI: 10.3390/buildings11020056.
  • Capineri, L.; Bulletti, A. Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review. Sensors 2021, 21, 2929. DOI: 10.3390/s21092929.
  • Jiang, Z.; Zhang, Z.; Maxwell, A. Extraction of Structural Modal Information Using Acoustic Sensor Measurements and Machine Learning. J. Sound Vib. 2019, 450, 156–174. DOI: 10.1016/j.jsv.2019.03.009.
  • Shahbaz, M. A.; Khan, F.; Jawed, S. A.; Amin, S. U.; Jabbar, M. J.; Iftikhar, A. B.; Bhatti, M.; Aseeri, M. A.; Alghamdi, M. S.; Noor, R. M.; Alalyani, H. M.; Obeid, A. M. A Low-Power Differential Readout Interface for Capacitive Accelerometer-Based SHM Applications. Analog Integr. Circ. Sig. Process. 2022, 112, 161–174.
  • Komary, M.; Komarizadehasl, S.; Ramos, G.; Torralba, V. Developing and Validation of an Inclinometer Sensor Based on Fusion of a Magnetometer, an Accelerometer and a Gyroscope Sensor for SHM Applications. In Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability; CRC Pres: Boca Raton, FL, 2022; pp 1607–1611.
  • Sanati, M.; Sandwell, A.; Mostaghimi, H.; Park, S. S. Development of Nanocomposite-Based Strain Sensor with Piezoelectric and Piezoresistive Properties. Sensors 2018, 18, 3789. DOI: 10.3390/s18113789.
  • Majumder, M.; Gangopadhyay, T. K.; Chakraborty, A. K.; Dasgupta, K.; Bhattacharya, D. K. Fiber Bragg Gratings in Structural Health Monitoring—Present Status and Applications. Sens. Actuators, A 2008, 147, 150–164. DOI: 10.1016/j.sna.2008.04.008.
  • Aly, K.; Li, A.; Bradford, P. D. Strain Sensing in Composites Using Aligned Carbon Nanotube Sheets Embedded in the Interlaminar Region. Compos. A Appl. Sci. Manuf. 2016, 90, 536–548. DOI: 10.1016/j.compositesa.2016.08.003.
  • Ren, Y.; Xu, Q.; Yuan, S. Research on Improving Accuracy of Damage Quantification Based on Two-Level Consistency Control of PZT Layers. Chin. J. Aeronaut. 2022, 36, 241–253. DOI: 10.1016/j.cja.2022.09.021.
  • Jojibabu, P.; Zhang, Y. X.; Prusty, B. G. A Review of Research Advances in Epoxy-Based Nanocomposites as Adhesive Materials. Int. J. Adhes. Adhes. 2020, 96, 102454. DOI: 10.1016/j.ijadhadh.2019.102454.
  • Yee, M. J.; Mubarak, N. M.; Abdullah, E. C.; Khalid, M.; Walvekar, R.; Karri, R. R.; Nizamuddin, S.; Numan, A. Carbon Nanomaterials Based Films for Strain Sensing Application—A Review. Nano Struct. Nano Objects 2019, 18, 100312.
  • Li, C.; Thostenson, E. T.; Chou, T.-W. Sensors and Actuators Based on Carbon Nanotubes and Their Composites: A Review. Compos. Sci. Technol. 2008, 68, 1227–1249. DOI: 10.1016/j.compscitech.2008.01.006.
  • Rao, R. K.; Sasmal, S. Electromechanical Impedance-Based Embeddable Smart Composite for Condition-State Monitoring. Sens. Actuators, A 2022, 346, 113856. DOI: 10.1016/j.sna.2022.113856.
  • Rao, R. K.; Sindu, B. S.; Sasmal, S. Real-Time Monitoring of Structures under Extreme Loading Using Smart Composite-Based Embeddable Sensors. J. Intell. Mater. Syst. Struct. 2022, 34, 1073–1096. 1045389X221128586. DOI: 10.1177/1045389X221128586.
  • Li, Q.; Luo, S.; Wang, Q. M. Piezoresistive Thin Film Pressure Sensor Based on Carbon Nanotube-Polyimide Nanocomposites. Sens. Actuators, A 2019, 295, 336–342. DOI: 10.1016/j.sna.2019.06.017.
  • Jin, L.; Chortos, A.; Lian, F.; Pop, E.; Linder, C.; Bao, Z.; Cai, W. Microstructural Origin of Resistance–Strain Hysteresis in Carbon Nanotube Thin Film Conductors. Proc. Natl. Acad. Sci. U S A 2018, 115, 1986–1991.
  • Wang, Y.; Wang, S.; Li, M.; Gu, Y.; Zhang, Z. Piezoresistive Response of Carbon Nanotube Composite Film under Laterally Compressive Strain. Sens. Actuators, A 2018, 273, 140–146. DOI: 10.1016/j.sna.2018.02.032.
  • Wang, X.; Li, J.; Song, H.; Huang, H.; Gou, J. Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity. ACS Appl. Mater. Interfaces 2018, 10, 7371–7380.
  • Reddy, S. K.; Kumar, S.; Varadarajan, K. M.; Marpu, P. R.; Gupta, T. K.; Choosri, M. Strain and Damage-Sensing Performance of Biocompatible Smart CNT/UHMWPE Nanocomposites. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 957–968.
  • Vigolo, B.; Pénicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. Science 2000, 290, 1331–1334.
  • Kang, I.; Schulz, M. J.; Kim, J. H.; Shanov, V.; Shi, D. A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Struct. 2006, 15, 737–748. DOI: 10.1088/0964-1726/15/3/009.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Silvestre, J.; Silvestre, N.; De Brito, J. Polymer Nanocomposites for Structural Applications: Recent Trends and New Perspectives. Mech. Adv. Mater. Struct. 2016, 23, 1263–1277. DOI: 10.1080/15376494.2015.1068406.
  • Herrera-Ramirez, J. M.; Perez-Bustamante, R.; Aguilar-Elguezabal, A. An Overview of the Synthesis, Characterization, and Applications of Carbon Nanotubes. In Carbon-Based Nanofillers and Their Rubber Nanocomposites; Elsevier: Amsterdam, 2019; pp 47–75.
  • Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J. R.; Rajendran, D.; Al-Hamry, A. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors 2021, 21, 341. DOI: 10.3390/s21020341.
  • Zaporotskova, I. V.; Boroznina, N. P.; Parkhomenko, Y. N.; Kozhitov, L. V. Carbon Nanotubes: Sensor Properties. A Review. Mod. Electron. Mater. 2016, 2, 95–105. DOI: 10.1016/j.moem.2017.02.002.
  • Avilés, F.; Oliva, A. I.; Ventura, G.; May-Pat, A.; Oliva-Avilés, A. I. Effect of Carbon Nanotube Length on the Piezoresistive Response of Poly (Methyl Methacrylate) Nanocomposites. Eur. Polym. J. 2019, 110, 394–402. DOI: 10.1016/j.eurpolymj.2018.12.002.
  • Lu, M.; Liao, J.; Gulgunje, P. V.; Chang, H.; Arias-Monje, P. J.; Ramachandran, J.; Breedveld, V.; Kumar, S. Rheological Behavior and Fiber Spinning of Polyacrylonitrile (PAN)/Carbon Nanotube (CNT) Dispersions at High CNT Loading. Polymer 2021, 215, 123369.
  • Zhang, Q.; Wang, J.; Guo, B. H.; Guo, Z. X.; Yu, J. Electrical Conductivity of Carbon Nanotube-Filled Miscible Poly (Phenylene Oxide)/Polystyrene Blends Prepared by Melt Compounding. Compos. B Eng. 2019, 176, 107213. DOI: 10.1016/j.compositesb.2019.107213.
  • Coppola, B.; Di Maio, L.; Incarnato, L.; Tulliani, J. M. Preparation and Characterization of Polypropylene/Carbon Nanotubes (PP/CNTs) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring. Nanomaterials 2020, 10, 814. DOI: 10.3390/nano10040814.
  • Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Polymer-Functionalization of Carbon Nanotube by in Situ Conventional and Controlled Radical Polymerizations. Adv. Colloid Interface Sci. 2021, 294, 102471.
  • Chazot, C. A.; Jons, C. K.; Hart, A. J. In Situ Interfacial Polymerization: A Technique for Rapid Formation of Highly Loaded Carbon Nanotube‐Polymer Composites. Adv. Funct. Mater. 2020, 30, 2005499. DOI: 10.1002/adfm.202005499.
  • Rao, R. K.; Sasmal, S. Nanoengineered Smart Cement Composite for Electrical Impedance-Based Monitoring of Corrosion Progression in Structures. Cem. Concr. Compos. 2022, 126, 104348. DOI: 10.1016/j.cemconcomp.2021.104348.
  • Makireddi, S.; Shivaprasad, S.; Kosuri, G.; Varghese, F. V.; Balasubramaniam, K. Electro-Elastic and Piezoresistive Behavior of Flexible MWCNT/PMMA Nanocomposite Films Prepared by Solvent Casting Method for Structural Health Monitoring Applications. Compos. Sci. Technol. 2015, 118, 101–107. DOI: 10.1016/j.compscitech.2015.08.014.
  • Eisape, A.; Rennoll, V.; Van Volkenburg, T.; Xia, Z.; West, J. E.; Kang, S. H. Soft CNT-Polymer Composites for High Pressure Sensors. Sensors 2022, 22, 5268. DOI: 10.3390/s22145268.
  • Frømyr, T. R.; Hansen, F. K.; Olsen, T. The Optimum Dispersion of Carbon Nanotubes for Epoxy Nanocomposites: Evolution of the Particle Size Distribution by Ultrasonic Treatment. J. Nanotechnol. 2012, 2012, 1–14.
  • Arrigo, R.; Teresi, R.; Gambarotti, C.; Parisi, F.; Lazzara, G.; Dintcheva, N. T. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites. Materials 2018, 11, 383. DOI: 10.3390/ma11030383.
  • Tang, X.; Pötschke, P.; Pionteck, J.; Li, Y.; Formanek, P.; Voit, B. Tuning the Piezoresistive Behavior of Poly (Vinylidene Fluoride)/Carbon Nanotube Composites Using Poly (Methyl Methacrylate). ACS Appl. Mater. Interfaces 2020, 12, 43125–43137.
  • Jouni, M.; Boiteux, G.; Massardier, V. New Melt Mixing Polyethylene Multiwalled Carbon Nanotube Nanocomposites with Very Low Electrical Percolation Threshold. Polym. Adv. Techs. 2013, 24, 909–915.
  • Lv, J.; Cheng, Z.; Wu, H.; He, T.; Qin, J.; Liu, X. In-Situ Polymerization and Covalent Modification on Aramid Fiber Surface via Direct Fluorination for Interfacial Enhancement. Compos. B Eng. 2020, 182, 107608. DOI: 10.1016/j.compositesb.2019.107608.
  • Martin, D. J.; Osman, A. F.; Andriani, Y.; Edwards, G. A. . Thermoplastic Polyurethane (TPU)-Based Polymer Nanocomposites. In Advances in Polymer Nanocomposites; Woodhead Publishing: Cambridge, 2012; pp 321–350.
  • Xia, H.; Wang, Q.; Qiu, G. Polymer-Encapsulated Carbon Nanotubes Prepared through Ultrasonically Initiated in Situ Emulsion Polymerization. Chem. Mater. 2003, 15, 3879–3886.
  • Kumar, G. S.; Patro, T. U. Tuning the Piezoresistive Strain‐Sensing Behavior of Poly (Vinylidene Fluoride)–CNT Composites: The Role of Polymer–CNT Interface and Composite Processing Technique. J. Appl. Polym. Sci. 2022, 139, 51516. DOI: 10.1002/app.51516.
  • Ha, J. H.; Lee, S. E.; Park, S. H. Effect of Dispersion by Three-Roll Milling on Electrical Properties and Filler Length of Carbon Nanotube Composites. Materials 2019, 12, 3823. DOI: 10.3390/ma12233823.
  • Olifirov, L. K.; Kaloshkin, S. D.; Zhang, D. Study of Thermal Conductivity and Stress-Strain Compression Behavior of Epoxy Composites Highly Filled with Al and Al/f-MWCNT Obtained by High-Energy Ball Milling. Compo. A Appl. Sci. Manuf. 2017, 101, 344–352. DOI: 10.1016/j.compositesa.2017.06.027.
  • Wu, L.; Qian, J.; Peng, J.; Wang, K.; Liu, Z.; Ma, T.; Zhou, Y.; Wang, G.; Ye, S. Screen-Printed Flexible Temperature Sensor Based on FG/CNT/PDMS Composite with Constant TCR. J. Mater. Sci: Mater. Electron. 2019, 30, 9593–9601.
  • Sindu, B. S.; Sasmal, S. Properties of Carbon Nanotube Reinforced Cement Composite Synthesized Using Different Types of Surfactants. Constr. Build. Mater. 2017, 155, 389–399. DOI: 10.1016/j.conbuildmat.2017.08.059.
  • Hur, O. N.; Ha, J. H.; Park, S. H. Strain-Sensing Properties of Multi-Walled Carbon Nanotube/Polydimethylsiloxane Composites with Different Aspect Ratio and Filler Contents. Materials 2020, 13, 2431. DOI: 10.3390/ma13112431.
  • Delogu, F.; Gorrasi, G.; Sorrentino, A. Fabrication of Polymer Nanocomposites via Ball Milling: Present Status and Future Perspectives. Prog. Mater. Sci. 2017, 86, 75–126. DOI: 10.1016/j.pmatsci.2017.01.003.
  • Tanabi, H.; Erdal, M. Effect of CNTs Dispersion on Electrical, Mechanical and Strain Sensing Properties of CNT/Epoxy Nanocomposites. Results Phys. 2019, 12, 486–503. DOI: 10.1016/j.rinp.2018.11.081.
  • Sun, Z.; Xiao, J.; Tao, L.; Wei, Y.; Wang, S.; Zhang, H.; Zhu, S.; Yu, M. Preparation of High-Performance Carbon Fiber-Reinforced Epoxy Composites by Compression Resin Transfer Molding. Materials 2018, 12, 13. DOI: 10.3390/ma12010013.
  • Nangai, E. K.; Saravanan, S. Synthesis, Fabrication and Testing of Polymer Nanocomposites: A Review. Mater. Today: Proc. 2023, 2, 91–97.
  • Díez-Pascual, A. M. Chemical Functionalization of Carbon Nanotubes with Polymers: A Brief Overview. Macromol 2021, 1, 64–83. DOI: 10.3390/macromol1020006.
  • Mallakpour, S.; Soltanian, S. Surface Functionalization of Carbon Nanotubes: Fabrication and Applications. RSC Adv. 2016, 6, 109916–109935.
  • Janudin, N.; Abdullah, N.; Yunus, W. M. Z. W.; Yasin, F. M.; Yaacob, M. H.; Kasim, N.; Ahmad Shah, N. A.; Jamal, S. H.; Saidi, N. M.; Kasim, N. A. M. Carbon Nanofibers Functionalized with Amide Group for Ammonia Gas Detection. AIP Conf. Proc. 2019, 2068, 020061.
  • Hoa, L. T. M. Characterization of Multi-Walled Carbon Nanotubes Functionalized by a Mixture of HNO3/H2SO4. Diam. Relat. Mater. 2018, 89, 43–51.
  • Jon, C. S.; Meng, L. Y.; Li, D. Recent Review on Carbon Nanomaterials Functionalized with Ionic Liquids in Sample Pretreatment Application. TrAC, Trends Anal. Chem. 2019, 120, 115641. DOI: 10.1016/j.trac.2019.115641.
  • Kim, M.; Lee, J.; Roh, H. G.; Kim, D.; Byeon, J.; Park, J. Effects of Covalent Functionalization of Mwcnts on the Thermal Properties and Non-Isothermal Crystallization Behaviors of PPS Composites. Polymers 2017, 9, 460. DOI: 10.3390/polym9100460.
  • Osorio, A. G.; Silveira, I. C. L.; Bueno, V. L.; Bergmann, C. P. H2SO4/HNO3/HCl—Functionalization and Its Effect on Dispersion of Carbon Nanotubes in Aqueous Media. Appl. Surf. Sci. 2008, 255, 2485–2489. DOI: 10.1016/j.apsusc.2008.07.144.
  • Jian, W.; Lau, D. Understanding the Effect of Functionalization in CNT-Epoxy Nanocomposite from Molecular Level. Compos. Sci. Technol. 2020, 191, 108076. DOI: 10.1016/j.compscitech.2020.108076.
  • Chen, J.; Liu, B.; Gao, X.; Xu, D. A Review of the Interfacial Characteristics of Polymer Nanocomposites Containing Carbon Nanotubes. RSC Adv. 2018, 8, 28048–28085.
  • Wang, J.; Lei, T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping. Polymers 2020, 12, 1548. DOI: 10.3390/polym12071548.
  • Wang, H.; Bao, Z. Conjugated Polymer Sorting of Semiconducting Carbon Nanotubes and Their Electronic Applications. Nano Today 2015, 10, 737–758. DOI: 10.1016/j.nantod.2015.11.008.
  • Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping. Acc. Chem. Res. 2014, 47, 2446–2456.
  • Gomulya, W.; Gao, J.; Loi, M. A. Conjugated Polymer-Wrapped Carbon Nanotubes: Physical Properties and Device Applications. Eur. Phys. J. B 2013, 86, 1–13. DOI: 10.1140/epjb/e2013-40707-9.
  • Mistry, K. S.; Larsen, B. A.; Blackburn, J. L. High-Yield Dispersions of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Tunable Narrow Chirality Distributions. ACS Nano. 2013, 7, 2231–2239.
  • Han, J.; Ji, Q.; Qiu, S.; Li, H.; Zhang, S.; Jin, H.; Li, Q. A Versatile Approach to Obtain a High-Purity Semiconducting Single-Walled Carbon Nanotube Dispersion with Conjugated Polymers. Chem. Commun. 2015, 51, 4712–4714.
  • Wu, J.; Sun, Y. M.; Wu, Z.; Li, X.; Wang, N.; Tao, K.; Wang, G. P. Carbon Nanocoil-Based Fast-Response and Flexible Humidity Sensor for Multifunctional Applications. ACS Appl. Mater. Interfaces 2019, 11, 4242–4251.
  • Wang, X.; Zhang, M.; Zhang, L.; Xu, J.; Xiao, X.; Zhang, X. Inkjet-Printed Flexible Sensors: From Function Materials, Manufacture Process, and Applications Perspective. Mater. Today Commun. 2022, 31, 103263. DOI: 10.1016/j.mtcomm.2022.103263.
  • Rodríguez-González, J. A.; Rubio-González, C.; Soto-Cajiga, J. A. Piezoresistive Response of Spray-Coated Multiwalled Carbon Nanotube/Glass Fiber/Epoxy Composites under Flexural Loading. Fibers Polym. 2019, 20, 1673–1683. DOI: 10.1007/s12221-019-8711-8.
  • Sturdza, B. K.; Lauritzen, A. E.; Zhou, S.; Bennett, A. J.; Form, J.; Christoforo, M. G.; Dalgliesh, R. M.; Snaith, H. J.; Riede, M. K.; Nicholas, R. J. Improving Performance of Fully Scalable, Flexible Transparent Conductive Films Made from Carbon Nanotubes and Ethylene-Vinyl Acetate. Energy Rep. 2022, 8, 48–60.
  • Ferreira, A.; Lanceros-Mendez, S. Piezoresistive Response of Spray-Printed Carbon Nanotube/Poly (Vinylidene Fluoride) Composites. Compos. B Eng. 2016, 96, 242–247. DOI: 10.1016/j.compositesb.2016.03.098.
  • Wu, D.; Wei, M.; Li, R.; Xiao, T.; Gong, S.; Xiao, Z.; Zhu, Z.; Li, Z. A Percolation Network Model to Predict the Electrical Property of Flexible CNT/PDMS Composite Films Fabricated by Spin Coating Technique. Compos. B Eng. 2019, 174, 107034.
  • Li, Y.; Liu, X.; Liu, J.; Xiang, S. Fabrication and Characterization Study of Ultrathin Multi‐Walled Carbon Nanotubes/Polydimethylsiloxane Composite Membranes for Strain Sensing Application. Polym. Compos. 2022, 43, 5390–5403. DOI: 10.1002/pc.26842.
  • Bouhamed, A.; Al-Hamry, A.; Müller, C.; Choura, S.; Kanoun, O. Assessing the Electrical Behaviour of MWCNTs/Epoxy Nanocomposite for Strain Sensing. Compos. B Eng. 2017, 128, 91–99. DOI: 10.1016/j.compositesb.2017.07.005.
  • Cao, X.; Chen, H.; Gu, X.; Liu, B.; Wang, W.; Cao, Y.; Wu, F.; Zhou, C. Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes. ACS Nano. 2014, 8, 12769–12776.
  • Ribeiro, B.; Corredor, J. A. R.; Costa, M. L.; Botelho, E. C.; Rezende, M. C. Multifunctional Characteristics of Glass Fiber‐Reinforced Epoxy Polymer Composites with Multiwalled Carbon Nanotube Buckypaper Interlayer. Polym. Eng. Sci. 2020, 60, 740–751.
  • Nag-Chowdhury, S.; Bellégou, H.; Pillin, I.; Castro, M.; Longrais, P.; Feller, J. F. Interfacial Nanocomposite Sensors (sQRS) for the Core Monitoring of Polymer Composites’ Fatigue and Damage Analysis. Nanocomposites 2018, 4, 69–79. DOI: 10.1080/20550324.2018.1494772.
  • Fu, X.; Ramos, M.; Al-Jumaily, A. M.; Meshkinzar, A.; Huang, X. Stretchable Strain Sensor Facilely Fabricated Based on Multi-Wall Carbon Nanotube Composites with Excellent Performance. J. Mater. Sci. 2019, 54, 2170–2180. DOI: 10.1007/s10853-018-2954-4.
  • da Costa, T. H.; Choi, J. W. Fabrication and Patterning Methods of Flexible Sensors Using Carbon Nanomaterials on Polymers. Adv. Intell. Syst. 2020, 2, 1900179. DOI: 10.1002/aisy.201900179.
  • Ou, C.; Sangle, A. L.; Chalklen, T.; Jing, Q.; Narayan, V.; Kar-Narayan, S. Enhanced Thermoelectric Properties of Flexible Aerosol-Jet Printed Carbon Nanotube-Based Nanocomposites. Apl. Mater. 2018, 6, 096101. DOI: 10.1063/1.5043547.
  • Joo, S.; Lee, C. E.; Kang, J.; Seo, S.; Song, Y. K.; Kim, J. H. Intaglio Contact Printing of Versatile Carbon Nanotube Composites and Its Applications for Miniaturizing High‐Performance Devices. Small 2022, 18, e2106174.
  • Castellino, M.; Chiolerio, A.; Shahzad, M. I.; Jagdale, P. V.; Tagliaferro, A. Electrical Conductivity Phenomena in an Epoxy Resin–Carbon-Based Materials Composite. Compo. A Appl. Sci. Manuf. 2014, 61, 108–114. DOI: 10.1016/j.compositesa.2014.02.012.
  • Park, C. W. Spray-Coated Single-Wall Carbon Nanotube Film Strain Sensor. J. Ind. Technol. 2012, 32, 29–33.
  • Kim, S.; Yim, J.; Wang, X.; Bradley, D. D.; Lee, S.; deMello, J. C. Spin‐and Spray‐Deposited Single‐Walled Carbon‐Nanotube Electrodes for Organic Solar Cells. Adv. Funct. Mater. 2010, 20, 2310–2316.
  • Tian, Y.; Zhang, X.; Geng, H.-Z.; Yang, H.-J.; Li, C.; Da, S.-X.; Lu, X.; Wang, J.; Jia, S.-L. Carbon Nanotube/Polyurethane Films with High Transparency, Low Sheet Resistance and Strong Adhesion for Antistatic Application. RSC Adv. 2017, 7, 53018–53024.
  • Wu, Q.; Bai, H.; Yang, X.; Zhu, J. Significantly Increasing the Interfacial Adhesion of Carbon Fiber Composites via Constructing a Synergistic Hydrogen Bonding Network by Vacuum Filtration. Compos. B Eng. 2021, 225, 109300. DOI: 10.1016/j.compositesb.2021.109300.
  • Lee, D. K.; Yoo, J.; Kim, H.; Kang, B. H.; Park, S. H. Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios. Materials 2022, 15, 1356. DOI: 10.3390/ma15041356.
  • Karkhanehchin, M. E.; Maghrebi, M.; Baniadam, M.; Dashti, A.; Mokhtarifar, M. In Situ Polymerization of Functionalized Multiwalled-Carbon Nanotubes/Epoxy Resin Composite Fibers Using a Non-Solvent Technique. Polym. Polym. Compos. 2021, 29, 789–796. DOI: 10.1177/0967391120935237.
  • Parnian, P.; D'Amore, A. Fabrication of High-Performance CNT Reinforced Polymer Composite for Additive Manufacturing by Phase Inversion Technique. Polymers 2021, 13, 4007. DOI: 10.3390/polym13224007.
  • Khater, A.; Bhattacharyya, S.; Saadi, M. A. S. R.; Barnes, M.; Lou, M.; Harikrishnan, V.; Sajadi, S. M.; Boul, P. J.; Tiwary, C. S.; Zhu, H., Rahman, M. M.; Ajayan, P. M. 2021. Processing Dynamics of 3D-Printed Carbon Nanotubes-Epoxy Composites. arXiv preprint arXiv:2103.02672.
  • Wang, S.; Huang, Y.; Chang, E.; Zhao, C.; Ameli, A.; Naguib, H. E.; Park, C. B. Evaluation and Modeling of Electrical Conductivity in Conductive Polymer Nanocomposite Foams with Multiwalled Carbon Nanotube Networks. Chem. Eng. J. 2021, 411, 128382. DOI: 10.1016/j.cej.2020.128382.
  • Sankar, N.; Reddy, M. N.; Prasad, R. K. Carbon Nanotubes Dispersed Polymer Nanocomposites: Mechanical, Electrical, Thermal Properties and Surface Morphology. Bull. Mater. Sci. 2016, 39, 47–55.
  • Feng, C.; Jiang, L. Micromechanics Modeling of the Electrical Conductivity of Carbon Nanotube (CNT)–Polymer Nanocomposites. Compo. A Appl. Sci. Manuf. 2013, 47, 143–149. DOI: 10.1016/j.compositesa.2012.12.008.
  • Fang, W.; Jang, H. W.; Leung, S. N. Evaluation and Modelling of Electrically Conductive Polymer Nanocomposites with Carbon Nanotube Networks. Compos. B Eng. 2015, 83, 184–193. DOI: 10.1016/j.compositesb.2015.08.047.
  • García-Macías, E. Carbon Nano Tubes (CNTS) for the Development of High-Performance and Smart Composites. Doctoral Dissertation, Universidad de Sevilla, 2018.
  • Rana, S.; Subramani, P.; Fangueiro, R.; Correia, A. G. A Review on Smart Self-Sensing Composite Materials for Civil Engineering Applications. AIMS Mater. Sci. 2016, 3, 357–379.
  • Ke, K.; Pötschke, P.; Wiegand, N.; Krause, B.; Voit, B. Tuning the Network Structure in Poly (Vinylidene Fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity. ACS Appl. Mater. Interfaces 2016, 8, 14190–14199.
  • Zetina-Hernández, O.; Duarte-Aranda, S.; May-Pat, A.; Canché-Escamilla, G.; Uribe-Calderon, J.; Gonzalez-Chi, P. I.; Avilés, F. Coupled Electro-Mechanical Properties of Multiwall Carbon Nanotube/Polypropylene Composites for Strain Sensing Applications. J. Mater. Sci. 2013, 48, 7587–7593.
  • Hu, N.; Karube, Y.; Arai, M.; Watanabe, T.; Yan, C.; Li, Y.; Liu, Y.; Fukunaga, H. Investigation on Sensitivity of a Polymer/Carbon Nanotube Composite Strain Sensor. Carbon 2010, 48, 680–687.
  • Sanli, A.; Benchirouf, A.; Müller, C.; Kanoun, O. Piezoresistive Performance Characterization of Strain Sensitive Multi-Walled Carbon Nanotube-Epoxy Nanocomposites. Sens. Actuators, A 2017, 254, 61–68. DOI: 10.1016/j.sna.2016.12.011.
  • García-Macías, E.; D'Alessandro, A.; Castro-Triguero, R.; Pérez-Mira, D.; Ubertini, F. Micromechanics Modeling of the Electrical Conductivity of Carbon Nanotube Cement-Matrix Composites. Compos. B Eng. 2017, 108, 451–469. DOI: 10.1016/j.compositesb.2016.10.025.
  • Sasmal, S.; Rao, R. K.; Sindu, B. S. Performance of Cement Composite Embeddable Sensors for Strain-Based Health Monitoring of in-Service Structures. Smart Struct. Syst. Int. J. 2021, 28, 181–193.
  • Sam-Daliri, O.; Faller, L.-M.; Farahani, M.; Roshanghias, A.; Oberlercher, H.; Mitterer, T.; Araee, A.; Zangl, H. MWCNT–Epoxy Nanocomposite Sensors for Structural Health Monitoring. Electronics 2018, 7, 143. DOI: 10.3390/electronics7080143.
  • Zhao, C.; Yuan, W.; Liu, H.; Gu, B.; Hu, N.; Alamusi; Ning, Y.; Jia, F. Equivalent Circuit Model for the Strain Sensing Characteristics of Multi-Walled Carbon Nanotube/Polyvinylidene Fluoride Films in Alternating Current Circuit. Carbon. 2018, 129, 585–591.
  • Peponi, L.; Navarro-Baena, I.; Sonseca, A.; Gimenez, E.; Marcos-Fernandez, A.; Kenny, J. M. Synthesis and Characterization of PCL–PLLA Polyurethane with Shape Memory Behavior. Eur. Polym. J. 2013, 49, 893–903. DOI: 10.1016/j.eurpolymj.2012.11.001.
  • Li, J.; Rodgers, W. R.; Xie, T. Semi-Crystalline Two-Way Shape Memory Elastomer. Polymer 2011, 52, 5320–5325. DOI: 10.1016/j.polymer.2011.09.030.
  • Yu, L.; Shahsavan, H.; Rivers, G.; Zhang, C.; Si, P.; Zhao, B. Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation. Adv. Funct. Mater. 2018, 28, 1802809. DOI: 10.1002/adfm.201802809.
  • Berg, G. J.; McBride, M. K.; Wang, C.; Bowman, C. N. New Directions in the Chemistry of Shape Memory Polymers. Polymer 2014, 55, 5849–5872. DOI: 10.1016/j.polymer.2014.07.052.
  • Zhao, Q.; Qi, H. J.; Xie, T. Recent Progress in Shape Memory Polymer: New Behavior, Enabling Materials, and Mechanistic Understanding. Prog. Polym. Sci. 2015, 49–50, 79–120.
  • Liu, Y.; Du, H.; Liu, L.; Leng, J. Shape Memory Polymers and Their Composites in Aerospace Applications: A Review. Smart Mater. Struct. 2014, 23, 023001.
  • Moheimani, R.; Aliahmad, N.; Aliheidari, N.; Agarwal, M.; Dalir, H. Thermoplastic Polyurethane Flexible Capacitive Proximity Sensor Reinforced by CNTs for Applications in the Creative Industries. Sci. Rep. 2021, 11, 1104.
  • Peng, S.; Wu, S.; Yu, Y.; Xia, B.; Lovell, N. H.; Wang, C. H. Multimodal Capacitive and Piezoresistive Sensor for Simultaneous Measurement of Multiple Forces. ACS Appl. Mater. Interfaces 2020, 12, 22179–22190.
  • Mehmood, A.; Mubarak, N. M.; Khalid, M.; Walvekar, R.; Abdullah, E. C.; Siddiqui, M. T. H.; Baloch, H. A.; Nizamuddin, S.; Mazari, S. Graphene Based Nanomaterials for Strain Sensor Application—A Review. J. Environ. Chem. Eng. 2020, 8, 103743.
  • Dai, H.; Thostenson, E. T.; Schumacher, T. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites. Sensors 2015, 15, 17728–17747.
  • Esmaeili, A.; Sbarufatti, C.; Jiménez‐Suárez, A.; Urena, A.; Hamouda, A. M. Piezoresistive Characterization of Epoxy Based Nanocomposites Loaded with SWCNTs‐DWCNTs in Tensile and Fracture Tests. Polym. Compos. 2020, 41, 2598–2609. DOI: 10.1002/pc.25558.
  • Kumar, S.; Gupta, T. K.; Varadarajan, K. M. Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing. Compos. B Eng. 2019, 177, 107285. DOI: 10.1016/j.compositesb.2019.107285.
  • AlMahri, S.; Schneider, J.; Schiffer, A.; Kumar, S. Piezoresistive Sensing Performance of Multifunctional MWCNT/HDPE Auxetic Structures Enabled by Additive Manufacturing. Polym. Test. 2022, 114, 107687. DOI: 10.1016/j.polymertesting.2022.107687.
  • He, Z.; Byun, J.-H.; Zhou, G.; Park, B.-J.; Kim, T.-H.; Lee, S.-B.; Yi, J.-W.; Um, M.-K.; Chou, T.-W. Effect of MWCNT Content on the Mechanical and Strain-Sensing Performance of Thermoplastic Polyurethane Composite Fibers. Carbon 2019, 146, 701–708.
  • Tong, S.; Yuan, W.; Liu, H.; Alamusi; Hu, N.; Zhao, C.; Zhao, Y.. Linear Strain Sensor Made of Multi-Walled Carbon Nanotube/Epoxy Composite. Mater. Res. Express 2017, 4, 115008. DOI: 10.1088/2053-1591/aa9440.
  • Yu, S.; Wang, X.; Xiang, H.; Zhu, L.; Tebyetekerwa, M.; Zhu, M. Superior Piezoresistive Strain Sensing Behaviors of Carbon Nanotubes in One-Dimensional Polymer Fiber Structure. Carbon 2018, 140, 1–9. DOI: 10.1016/j.carbon.2018.08.028.
  • Loh, K. J.; Lynch, J. P.; Shim, B. S.; Kotov, N. A. Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors. J. Intell. Mater. Syst. Struct. 2008, 19, 747–764. DOI: 10.1177/1045389X07079872.
  • Xu, S.; Hu, H.; Ji, L.; Wang, P. Piezoresistive Properties of Multi-Walled Carbon Nanotube/Silicone Rubber Composites under Cyclic Loads with ac Excitation. J. Phys: Conf. Ser. 2019, 1168, 022075. DOI: 10.1088/1742-6596/1168/2/022075.
  • Pan, Y.; Weng, G. J.; Meguid, S. A.; Bao, W. S.; Zhu, Z. H.; Hamouda, A. M. S. Percolation Threshold and Electrical Conductivity of a Two-Phase Composite Containing Randomly Oriented Ellipsoidal Inclusions. J. Appl. Phys. 2011, 110, 123715. \ DOI: 10.1063/1.3671675.
  • Ma, P. C.; Mo, S. Y.; Tang, B. Z.; Kim, J. K. Dispersion, Interfacial Interaction and Re-Agglomeration of Functionalized Carbon Nanotubes in Epoxy Composites. Carbon 2010, 48, 1824–1834. DOI: 10.1016/j.carbon.2010.01.028.
  • Zhang, P.; Lei, S.; Fu, W.; Niu, J.; Liu, G.; Qian, J.; Sun, J. The Effects of Agglomerate on the Piezoresistivity of Conductive Carbon Nanotube/Polyvinylidene Fluoride Composites. Sens. Actuators, A 2018, 281, 176–184. DOI: 10.1016/j.sna.2018.08.037.
  • Costa, P.; Dios, J. R.; Cardoso, J.; Campo, J. J.; Tubio, C. R.; Gonçalves, B. F.; Castro, N.; Lanceros-Méndez, S. Polycarbonate Based Multifunctional Self-Sensing 2D and 3D Printed Structures for Aeronautic Applications. Smart Mater. Struct. 2021, 30, 085032.
  • Spinelli, G.; Lamberti, P.; Tucci, V.; Vertuccio, L.; Guadagno, L. Experimental and Theoretical Study on Piezoresistive Properties of a Structural Resin Reinforced with Carbon Nanotubes for Strain Sensing and Damage Monitoring. Compos. B Eng. 2018, 145, 90–99. DOI: 10.1016/j.compositesb.2018.03.025.
  • Cao, X.; Wei, X.; Li, G.; Hu, C.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Strain Sensing Behaviors of Epoxy Nanocomposites with Carbon Nanotubes under Cyclic Deformation. Polymer 2017, 112, 1–9.
  • Sánchez-Romate, X. F.; Moriche, R.; Jiménez-Suárez, A.; Sánchez, M.; Prolongo, S. G.; Güemes, A.; Ureña, A. Highly Sensitive Strain Gauges with Carbon Nanotubes: From Bulk Nanocomposites to Multifunctional Coatings for Damage Sensing. Appl. Surf. Sci. 2017, 424, 213–221. DOI: 10.1016/j.apsusc.2017.03.234.
  • Ku-Herrera, J. J.; Avilés, F. Cyclic Tension and Compression Piezoresistivity of Carbon Nanotube/Vinyl Ester Composites in the Elastic and Plastic Regimes. Carbon 2012, 50, 2592–2598. DOI: 10.1016/j.carbon.2012.02.018.
  • Sanli, A.; Müller, C.; Kanoun, O.; Elibol, C.; Wagner, M. F. X. Piezoresistive Characterization of Multi-Walled Carbon Nanotube-Epoxy Based Flexible Strain Sensitive Films by Impedance Spectroscopy. Compos. Sci. Technol. 2016, 122, 18–26. DOI: 10.1016/j.compscitech.2015.11.012.
  • Esmaeili, A.; Sbarufatti, C.; Ma, D.; Manes, A.; Jiménez-Suárez, A.; Ureña, A.; Dellasega, D.; Hamouda, A. M. S. Strain and Crack Growth Sensing Capability of SWCNT Reinforced Epoxy in Tensile and Mode I Fracture Tests. Compos. Sci. Technol. 2020, 186, 107918.
  • Kaiyan, H.; Weifeng, Y.; Shuying, T.; Haidong, L. A Fabrication Process to Make CNT/EP Composite Strain Sensors. High Perform. Polym. 2018, 30, 224–229. DOI: 10.1177/0954008316689132.
  • Bouhamed, A.; Müller, C.; Choura, S.; Kanoun, O. Processing and Characterization of MWCNTs/Epoxy Nanocomposites Thin Films for Strain Sensing Applications. Sens. Actuators, A 2017, 257, 65–72. DOI: 10.1016/j.sna.2017.01.022.
  • Avilés, F.; May-Pat, A.; Canché-Escamilla, G.; Rodríguez-Uicab, O.; Ku-Herrera, J. J.; Duarte-Aranda, S.; Uribe-Calderon, J.; Gonzalez-Chi, P. I.; Arronche, L.; La Saponara, V. Influence of Carbon Nanotube on the Piezoresistive Behavior of Multiwall Carbon Nanotube/Polymer Composites. J. Intell. Mater. Syst. Struct. 2016, 27, 92–103. DOI: 10.1177/1045389X14560367.
  • Wang, X.; Lu, S.; Ma, K.; Xiong, X.; Zhang, H.; Xu, M. Tensile Strain Sensing of Buckypaper and Buckypaper Composites. Mater. Des. 2015, 88, 414–419. DOI: 10.1016/j.matdes.2015.09.035.
  • Cob, J.; Oliva-Avilés, A. I.; Avilés, F.; Oliva, A. I. Influence of Concentration, Length and Orientation of Multiwall Carbon Nanotubes on the Electromechanical Response of Polymer Nanocomposites. Mater. Res. Express 2019, 6, 115024.
  • Ghavidel, A. K.; Zadshakoyan, M.; Kiani, G.; Lawrence, J.; Moradi, M. Innovative Approach Using Ultrasonic-Assisted Laser Beam Machining for the Fabrication of Ultrasensitive Carbon Nanotubes-Based Strain Gauges. Opt. Lasers Eng. 2023, 161, 107325. DOI: 10.1016/j.optlaseng.2022.107325.
  • Slobodian, P.; Riha, P.; Saha, P. A Highly-Deformable Composite Composed of an Entangled Network of Electrically-Conductive Carbon-Nanotubes Embedded in Elastic Polyurethane. Carbon 2012, 50, 3446–3453. DOI: 10.1016/j.carbon.2012.03.008.
  • Sang, Z.; Ke, K.; Manas-Zloczower, I. Effect of Carbon Nanotube Morphology on Properties in Thermoplastic Elastomer Composites for Strain Sensors. Compo. A Appl. Sci. Manuf. 2019, 121, 207–212. DOI: 10.1016/j.compositesa.2019.03.007.
  • Xiang, D.; Zhang, X.; Li, Y.; Harkin-Jones, E.; Zheng, Y.; Wang, L.; Zhao, C.; Wang, P. Enhanced Performance of 3D Printed Highly Elastic Strain Sensors of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites via Non-Covalent Interactions. Compos. B Eng. 2019, 176, 107250.
  • Wang, X.; Xue, R.; Li, M.; Guo, X.; Liu, B.; Xu, W.; Wang, Z.; Liu, Y.; Wang, G. Strain and Stress Sensing Properties of the MWCNT/TPU Nanofiber Film. Surf. Interfaces 2022, 32, 102132.
  • Huang, K.; Ning, H.; Hu, N.; Liu, F.; Wu, X.; Wang, S.; Liu, Y.; Zou, R.; Yuan, W.; Alamusi; Wu, L. Ultrasensitive MWCNT/PDMS Composite Strain Sensor Fabricated by Laser Ablation Process. Compos. Sci. Technol. 2020, 192, 108105.
  • Zhou, J.; Yu, H.; Xu, X.; Han, F.; Lubineau, G. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers. ACS Appl. Mater. Interfaces 2017, 9, 4835–4842.
  • Nie, B.; Li, X.; Shao, J.; Li, X.; Tian, H.; Wang, D.; Zhang, Q.; Lu, B. Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes. ACS Appl. Mater. Interfaces. 2017, 9, 40681–40689.
  • Paul, S. J.; Elizabeth, I.; Gupta, B. K. Ultrasensitive Wearable Strain Sensors Based on a VACNT/PDMS Thin Film for a Wide Range of Human Motion Monitoring. ACS Appl. Mater. Interfaces 2021, 13, 8871–8879.
  • Georgousis, G.; Pandis, C.; Kalamiotis, A.; Georgiopoulos, P.; Kyritsis, A.; Kontou, E.; Pissis, P.; Micusik, M.; Czanikova, K.; Kulicek, J.; Omastova, M. Strain Sensing in Polymer/Carbon Nanotube Composites by Electrical Resistance Measurement. Compos. B Eng. 2015, 68, 162–169.
  • Sankar, V.; Balasubramaniam, K.; Sundara, R. Insights into the Effect of Polymer Functionalization of Multiwalled Carbon Nanotubes in the Design of Flexible Strain Sensor. Sens. Actuators, A 2021, 322, 112605. DOI: 10.1016/j.sna.2021.112605.
  • Rodríguez-Uicab, O.; Martin-Barrera, C.; May-Pat, A.; Can-Ortiz, A.; Gonzalez-Chi, P. I.; Avilés, F. Electrical Self-Sensing of Strain and Damage of Thermoplastic Hierarchical Composites Subjected to Monotonic and Cyclic Tensile Loading. J. Intell. Mater. Syst. Struct. 2019, 30, 1527–1537. DOI: 10.1177/1045389X19835962.
  • Hegde, R.; Ramji, K.; Peravali, S.; Shiralgi, Y.; Hegde, G.; Bathini, L. Characterization of MWCNT-PEDOT: PSS Nanocomposite Flexible Thin Film for Piezoresistive Strain Sensing Application. Adv. Polym. Tech. 2019, 2019, 1–9.
  • Li, Q.; Luo, S.; Wang, Y.; Wang, Q. M. Carbon Based Polyimide Nanocomposites Thin Film Strain Sensors Fabricated by Ink-Jet Printing Method. Sens. Actuators, A 2019, 300, 111664. DOI: 10.1016/j.sna.2019.111664.
  • Bautista-Quijano, J. R.; Pötschke, P.; Brünig, H.; Heinrich, G. Strain Sensing, Electrical and Mechanical Properties of Polycarbonate/Multiwall Carbon Nanotube Monofilament Fibers Fabricated by Melt Spinning. Polymer 2016, 82, 181–189. DOI: 10.1016/j.polymer.2015.11.030.
  • Dul, S.; Pegoretti, A.; Fambri, L. Fused Filament Fabrication of Piezoresistive Carbon Nanotubes Nanocomposites for Strain Monitoring. Front. Mater. 2020, 7, 12. DOI: 10.3389/fmats.2020.00012.
  • Thaler, D.; Aliheidari, N.; Ameli, A. Mechanical, Electrical, and Piezoresistivity Behaviors of Additively Manufactured Acrylonitrile Butadiene Styrene/Carbon Nanotube Nanocomposites. Smart Mater. Struct. 2019, 28, 084004.
  • Parmar, K.; Mahmoodi, M.; Park, C.; Park, S. S. Effect of CNT Alignment on the Strain Sensing Capability of Carbon Nanotube Composites. Smart Mater. Struct. 2013, 22, 075006. DOI: 10.1088/0964-1726/22/7/075006.
  • Sengezer, E. C.; Seidel, G. D.; Bodnar, R. J. Anisotropic Piezoresistivity Characteristics of Aligned Carbon Nanotube-Polymer Nanocomposites. Smart Mater. Struct. 2017, 26, 095027.
  • Gong, S.; Zhu, Z. H.; Meguid, S. A. Anisotropic Electrical Conductivity of Polymer Composites with Aligned Carbon Nanotubes. Polymer 2015, 56, 498–506. DOI: 10.1016/j.polymer.2014.11.038.
  • Zha, J. W.; Shehzad, K.; Li, W. K.; Dang, Z. M. The Effect of Aspect Ratio on the Piezoresistive Behavior of the Multiwalled Carbon Nanotubes/Thermoplastic Elastomer Nanocomposites. J. Appl. Phys. 2013, 113, 014102. DOI: 10.1063/1.4772747.
  • Panozzo, F.; Zappalorto, M.; Quaresimin, M. Analytical Model for the Prediction of the Piezoresistive Behavior of CNT Modified Polymers. Compos. B Eng. 2017, 109, 53–63. DOI: 10.1016/j.compositesb.2016.10.034.
  • Meeuw, H.; Viets, C.; Liebig, W. V.; Schulte, K.; Fiedler, B. Morphological Influence of Carbon Nanofillers on the Piezoresistive Response of Carbon Nanoparticle/Epoxy Composites under Mechanical Load. Eur. Polym. J. 2016, 85, 198–210. DOI: 10.1016/j.eurpolymj.2016.10.027.
  • Xia, X.; Zhao, S.; Zhang, J.; Fang, C.; Weng, G. J. A Unified Investigation into the Tensile and Compressive Sensing Performance in Highly Sensitive MWCNT/Epoxy Nanocomposite Strain Sensor through Loading-Dependent Tunneling Distance. Compos. Sci. Technol. 2022, 230, 109723. DOI: 10.1016/j.compscitech.2022.109723.
  • Wajahat, M.; Lee, S.; Kim, J. H.; Chang, W. S.; Pyo, J.; Cho, S. H.; Seol, S. K. Flexible Strain Sensors Fabricated by Meniscus-Guided Printing of Carbon Nanotube–Polymer Composites. ACS Appl. Mater. Interfaces 2018, 10, 19999–20005.
  • Arif, M. F.; Kumar, S.; Gupta, T. K.; Varadarajan, K. M. Strong Linear-Piezoresistive-Response of Carbon Nanostructures Reinforced Hyperelastic Polymer Nanocomposites. Compo. A Appl. Sci. Manuf. 2018, 113, 141–149. DOI: 10.1016/j.compositesa.2018.07.021.
  • Dharap, P.; Li, Z.; Nagarajaiah, S.; Barrera, E. V. Nanotube Film Based on Single-Wall Carbon Nanotubes for Strain Sensing. Nanotechnology 2004, 15, 379–382. DOI: 10.1088/0957-4484/15/3/026.
  • Khodke, M. R.; Joshi, S. V. An Investigative Study on Application of Carbon Nanotubes for Strain Sensing. Nanosystems: Phys. Chem. Math. 2016, 7, 755–758. DOI: 10.17586/2220-8054-2016-7-4-755-758.
  • Rein, M. D.; Breuer, O.; Wagner, H. D. Sensors and Sensitivity: Carbon Nanotube Buckypaper Films as Strain Sensing Devices. Compos. Sci. Technol. 2011, 71, 373–381. DOI: 10.1016/j.compscitech.2010.12.008.
  • Chen, S.; Luo, J.; Wang, X.; Li, Q.; Zhou, L.; Liu, C.; Feng, C. Fabrication and Piezoresistive/Piezoelectric Sensing Characteristics of Carbon Nanotube/PVA/nano-ZnO Flexible Composite. Sci. Rep. 2020, 10, 8895.
  • Kwon, D. J.; Wang, Z. J.; Choi, J. Y.; Shin, P. S.; DeVries, K. L.; Park, J. M. Damage Sensing and Fracture Detection of CNT Paste Using Electrical Resistance Measurements. Compos. B Eng. 2016, 90, 386–391. DOI: 10.1016/j.compositesb.2016.01.020.
  • Gao, L.; Thostenson, E. T.; Zhang, Z.; Chou, T. W. Sensing of Damage Mechanisms in Fiber‐Reinforced Composites under Cyclic Loading Using Carbon Nanotubes. Adv. Funct. Mater. 2009, 19, 123–130.
  • Augustin, T.; Karsten, J.; Fiedler, B. Detection and Localization of Impact Damages in Carbon Nanotube–Modified Epoxy Adhesive Films with Printed Circuits. Struct. Health Monitor. 2018, 17, 1166–1177. DOI: 10.1177/1475921717738140.
  • Vertuccio, L.; Vittoria, V.; Guadagno, L.; De Santis, F. Strain and Damage Monitoring in Carbon-Nanotube-Based Composite under Cyclic Strain. Compo. A Appl. Sci. Manuf. 2015, 71, 9–16. DOI: 10.1016/j.compositesa.2015.01.001.
  • Salaeh, S.; Das, A.; Stöckelhuber, K. W.; Wießner, S. Fabrication of a Strain Sensor from a Thermoplastic Vulcanizate with an Embedded Interconnected Conducting Filler Network. Compo. A Appl. Sci. Manuf. 2020, 130, 105763. DOI: 10.1016/j.compositesa.2020.105763.
  • Hwang, S. H.; Park, H. W.; Park, Y. B.; Um, M. K.; Byun, J. H.; Kwon, S. Electromechanical Strain Sensing Using Polycarbonate-Impregnated Carbon Nanotube–Graphene Nanoplatelet Hybrid Composite Sheets. Compos. Sci. Technol. 2013, 89, 1–9. DOI: 10.1016/j.compscitech.2013.09.005.
  • Rausch, J.; Mäder, E. Health Monitoring in Continuous Glass Fiber Reinforced Thermoplastics: Tailored Sensitivity and Cyclic Loading of CNT-Based Interphase Sensors. Compos. Sci. Technol. 2010, 70, 2023–2030. DOI: 10.1016/j.compscitech.2010.08.003.
  • Hamdi, K.; Aboura, Z.; Harizi, W.; Khellil, K. Structural Health Monitoring of Carbon Fiber Reinforced Matrix by the Resistance Variation Method. J. Compos. Mater. 2020, 54, 3919–3930. 0021998320921476. DOI: 10.1177/0021998320921476.
  • Gallo, G. J.; Thostenson, E. T. Electrical Characterization and Modeling of Carbon Nanotube and Carbon Fiber Self-Sensing Composites for Enhanced Sensing of Microcracks. Mater. Today Commun. 2015, 3, 17–26. DOI: 10.1016/j.mtcomm.2015.01.009.
  • Zhang, H.; Bilotti, E.; Peijs, T. The Use of Carbon Nanotubes for Damage Sensing and Structural Health Monitoring in Laminated Composites: A Review. Nanocomposites 2015, 1, 167–184. DOI: 10.1080/20550324.2015.1113639.
  • Kim, K. J.; Yu, W. R.; Lee, J. S.; Gao, L.; Thostenson, E. T.; Chou, T. W.; Byun, J. H. Damage Characterization of 3D Braided Composites Using Carbon Nanotube-Based in Situ Sensing. Compo. A Appl. Sci. Manuf. 2010, 41, 1531–1537. DOI: 10.1016/j.compositesa.2010.06.016.
  • Ku-Herrera, J. D. J.; La Saponara, V.; Avilés, F. Selective Damage Sensing in Multiscale Hierarchical Composites by Tailoring the Location of Carbon Nanotubes. J. Intell. Mater. Syst. Struct. 2018, 29, 553–562. DOI: 10.1177/1045389X17711790.
  • Baltopoulos, A.; Polydorides, N.; Pambaguian, L.; Vavouliotis, A.; Kostopoulos, V. Exploiting Carbon Nanotube Networks for Damage Assessment of Fiber Reinforced Composites. Compos. B Eng. 2015, 76, 149–158. DOI: 10.1016/j.compositesb.2015.02.022.
  • Wang, Y.; Wang, Y.; Wan, B.; Han, B.; Cai, G.; Chang, R. Strain and Damage Self-Sensing of Basalt Fiber Reinforced Polymer Laminates Fabricated with Carbon Nanofibers/Epoxy Composites under Tension. Compo. A Appl. Sci. Manuf. 2018, 113, 40–52. DOI: 10.1016/j.compositesa.2018.07.017.
  • Fiedler, B.; Gojny, F. H.; Wichmann, M. H. G.; Bauhofer, W.; Schulte, K. Can Carbon Nanotubes Be Used to Sense Damage in Composites? In. Ann. Chim. Sci. Mat. 2004, 29, 81–94. DOI: 10.3166/acsm.29.6.81-94.
  • Tzounis, L.; Zappalorto, M.; Panozzo, F.; Tsirka, K.; Maragoni, L.; Paipetis, A. S.; Quaresimin, M. Highly Conductive Ultra-Sensitive SWCNT-Coated Glass Fiber Reinforcements for Laminate Composites Structural Health Monitoring. Compos. B Eng. 2019, 169, 37–44. DOI: 10.1016/j.compositesb.2019.03.070.
  • Zhang, H.; Liu, Y.; Kuwata, M.; Bilotti, E.; Peijs, T. Improved Fracture Toughness and Integrated Damage Sensing Capability by Spray Coated CNTs on Carbon Fiber Prepreg. Compo. A Appl. Sci. Manuf. 2015, 70, 102–110. DOI: 10.1016/j.compositesa.2014.11.029.
  • Thostenson, E. T.; Chou, T. W. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self-Healing. Adv. Mater. 2006, 18, 2837–2841. DOI: 10.1002/adma.200600977.
  • Zhang, W.; Sakalkar, V.; Koratkar, N. In Situ Health Monitoring and Repair in Composites Using Carbon Nanotube Additives. Appl. Phys. Lett. 2007, 91, 133102. DOI: 10.1063/1.2783970.
  • Slobodian, P.; Pertegás, S. L.; Riha, P.; Matyas, J.; Olejnik, R.; Schledjewski, R.; Kovar, M. Glass Fiber/Epoxy Composites with Integrated Layer of Carbon Nanotubes for Deformation Detection. Compos. Sci. Technol. 2018, 156, 61–69. DOI: 10.1016/j.compscitech.2017.12.012.
  • Shen, L.; Liu, L.; Wang, W.; Zhou, Y. In Situ Self-Sensing of Delamination Initiation and Growth in Multi-Directional Laminates Using Carbon Nanotube Interleaves. Compos. Sci. Technol. 2018, 167, 141–147. DOI: 10.1016/j.compscitech.2018.07.044.
  • Zhang, Z.; Wei, H.; Liu, Y.; Leng, J. Self-Sensing Properties of Smart Composite Based on Embedded Buckypaper Layer. Struct. Health Monitor. 2015, 14, 127–136. DOI: 10.1177/1475921714568405.
  • Kravchenko, O. G.; Pedrazzoli, D.; Kovtun, D.; Qian, X.; Manas-Zloczower, I. Incorporation of Plasma-Functionalized Carbon Nanostructures in Composite Laminates for Interlaminar Reinforcement and Delamination Crack Monitoring. J. Phys. Chem. Solids 2018, 112, 163–170. DOI: 10.1016/j.jpcs.2017.09.018.
  • Vertuccio, L.; Guadagno, L.; Spinelli, G.; Lamberti, P.; Zarrelli, M.; Russo, S.; Iannuzzo, G. Smart Coatings of Epoxy Based CNTs Designed to Meet Practical Expectations in Aeronautics. Compos. B Eng. 2018, 147, 42–46. DOI: 10.1016/j.compositesb.2018.04.027.
  • Bu, L.; Steitz, J.; Kanoun, O. Influence of Processing Parameters on Properties of Strain Sensors Based on Carbon Nanotube Films. 2010 7th International Multi-Conference on Systems, Signals and Devices; IEEE, 2010; pp 1–6.
  • Murray, C. M.; Doshi, S. M.; Sung, D. H.; Thostenson, E. T. Hierarchical Composites with Electrophoretically Deposited Carbon Nanotubes for in Situ Sensing of Deformation and Damage. Nanomaterials 2020, 10, 1262. DOI: 10.3390/nano10071262.
  • De Luca, H. G.; Anthony, D. B.; Greenhalgh, E. S.; Bismarck, A.; Shaffer, M. S. P. Piezoresistive Structural Composites Reinforced by Carbon Nanotube-Grafted Quartz Fibers. Compos. Sci. Technol. 2020, 198, 108275. DOI: 10.1016/j.compscitech.2020.108275.
  • Sebastian, J.; Schehl, N.; Bouchard, M.; Boehle, M.; Li, L.; Lagounov, A.; Lafdi, K. Health Monitoring of Structural Composites with Embedded Carbon Nanotube Coated Glass Fiber Sensors. Carbon 2014, 66, 191–200. DOI: 10.1016/j.carbon.2013.08.058.
  • Alexopoulos, N. D.; Bartholome, C.; Poulin, P.; Marioli-Riga, Z. Structural Health Monitoring of Glass Fiber Reinforced Composites Using Embedded Carbon Nanotube (CNT) Fibers. Compos. Sci. Technol. 2010, 70, 260–271. DOI: 10.1016/j.compscitech.2009.10.017.
  • Jung, Y. T.; Roh, H. D.; Lee, I. Y.; Park, Y. B. Strain Sensing and Progressive Failure Monitoring of Glass-Fiber-Reinforced Composites Using Percolated Carbon Nanotube Networks. Funct. Compos. Struct. 2020, 2, 015006.
  • Park, K.; Scaccabarozzi, D.; Sbarufatti, C.; Jimenez-Suarez, A.; Ureña, A.; Ryu, S.; Libonati, F. Coupled Health Monitoring System for CNT-Doped Self-Sensing Composites. Carbon 2020, 166, 193–204. DOI: 10.1016/j.carbon.2020.04.060.
  • O’Donnell, J.; Chalivendra, V.; Hall, A.; Haile, M.; Nataraj, L.; Coatney, M.; Kim, Y. Electro-Mechanical Studies of Multi-Functional Glass Fiber/Epoxy Reinforced Composites. J. Reinf. Plast. Compos. 2019, 38, 506–520. DOI: 10.1177/0731684419832796.
  • Robert, C.; Pillin, I.; Castro, M.; Feller, J. F. Multifunctional Carbon Nanotubes Enhanced Structural Composites with Improved Toughness and Damage Monitoring. J. Compos. Sci. 2019, 3, 109.
  • Müller, M. T.; Eichhorn, K.; Gohs, U.; Heinrich, G. In-Line Nanostructuring of Glass Fibers Using Different Carbon Allotropes for Structural Health Monitoring Application. Fibers 2019, 7, 61. DOI: 10.3390/fib7070061.
  • Isaac-Medina, B. K. S.; Alonzo-García, A.; Avilés, F. Electrical Self-Sensing of Impact Damage in Multiscale Hierarchical Composites with Tailored Location of Carbon Nanotube Networks. Struct. Health Monitor. 2019, 18, 806–818. DOI: 10.1177/1475921718776198.
  • Ikikardaslar, K. T.; Delale, F. Self‐Sensing Damage in CNT Infused Epoxy Panels with and without Glass‐Fiber Reinforcement. Strain 2018, 54, e12268. DOI: 10.1111/str.12268.
  • Al-Bahrani, M.; Aljuboury, M.; Cree, A. Damage Sensing and Mechanical Properties of Laminate Composite Based MWCNTs under Anticlastic Test. Mater. Res. Express 2018, 6, 035704. DOI: 10.1088/2053-1591/aaf6fe.
  • Ou, Y.; González, C.; Vilatela, J. J. Interlaminar Toughening in Structural Carbon Fiber/Epoxy Composites Interleaved with Carbon Nanotube Veils. Compo. A Appl. Sci. Manuf. 2019, 124, 105477. DOI: 10.1016/j.compositesa.2019.105477.
  • Aly, K.; Bradford, P. D. Real-Time Impact Damage Sensing and Localization in Composites through Embedded Aligned Carbon Nanotube Sheets. Compos. B Eng. 2019, 162, 522–531. DOI: 10.1016/j.compositesb.2018.12.104.
  • Kravchenko, O. G.; Pedrazzoli, D.; Bonab, V. S.; Manas-Zloczower, I. Conductive Interlaminar Interfaces for Structural Health Monitoring in Composite Laminates under Fatigue Loading. Mater. Des. 2018, 160, 1217–1225. DOI: 10.1016/j.matdes.2018.10.045.
  • Matzeu, G.; Pucci, A.; Savi, S.; Romanelli, M.; Di Francesco, F. A Temperature Sensor Based on a MWCNT/SEBS Nanocomposite. Sens. Actuators, A 2012, 178, 94–99. DOI: 10.1016/j.sna.2012.02.043.
  • Cen-Puc, M.; Pool, G.; Oliva-Avilés, A. I.; May-Pat, A.; Avilés, F. Experimental Investigation of the Thermoresistive Response of Multiwall Carbon Nanotube/Polysulfone Composites under Heating-Cooling Cycles. Compos. Sci. Technol. 2017, 151, 34–43. DOI: 10.1016/j.compscitech.2017.08.003.
  • Cai, J. H.; Li, J.; Chen, X. D.; Wang, M. Multifunctional Polydimethylsiloxane Foam with Multi-Walled Carbon Nanotube and Thermo-Expandable Microsphere for Temperature Sensing, Microwave Shielding and Piezoresistive Sensor. Chem. Eng. J. 2020, 393, 124805. DOI: 10.1016/j.cej.2020.124805.
  • Zeng, Y.; Lu, G.; Wang, H.; Du, J.; Ying, Z.; Liu, C. Positive Temperature Coefficient Thermistors Based on Carbon Nanotube/Polymer Composites. Sci. Rep. 2014, 4, 6684.
  • Cen-Puc, M.; Oliva-Avilés, A. I.; Avilés, F. Thermoresistive Mechanisms of Carbon Nanotube/Polymer Composites. Physica E 2018, 95, 41–50. DOI: 10.1016/j.physe.2017.09.001.
  • Balam, A.; Cen-Puc, M.; May-Pat, A.; Abot, J. L.; Avilés, F. Influence of Polymer Matrix on the Sensing Capabilities of Carbon Nanotube Polymeric Thermistors. Smart Mater. Struct. 2019, 29, 015012. DOI: 10.1088/1361-665X/ab4e08.
  • Gong, S.; Zhu, Z. H.; Li, Z. Electron Tunnelling and Hopping Effects on the Temperature Coefficient of Resistance of Carbon Nanotube/Polymer Nanocomposites. Phys. Chem. Chem. Phys. 2017, 19, 5113–5120.
  • Lasater, K. L.; Thostenson, E. T. In Situ Thermoresistive Characterization of Multifunctional Composites of Carbon Nanotubes. Polymer 2012, 53, 5367–5374. DOI: 10.1016/j.polymer.2012.09.022.
  • Krucińska, I.; Surma, B.; Chrzanowski, M.; Skrzetuska, E.; Puchalski, M. Application of Melt‐Blown Technology for the Manufacture of Temperature‐Sensitive Nonwoven Fabrics Composed of Polymer Blends PP/PCL Loaded with Multiwall Carbon Nanotubes. J. Appl. Polym. Sci. 2013, 127, 869–878.
  • Mecklenburg, M.; Mizushima, D.; Ohtake, N.; Bauhofer, W.; Fiedler, B.; Schulte, K. On the Manufacturing and Electrical and Mechanical Properties of Ultra-High wt.% Fraction Aligned MWCNT and Randomly Oriented CNT Epoxy Composites. Carbon 2015, 91, 275–290. DOI: 10.1016/j.carbon.2015.04.085.
  • Fung, C. K.; Wong, V. T.; Chan, R. H.; Li, W. J. Dielectrophoretic Batch Fabrication of Bundled Carbon Nanotube Thermal Sensors. IEEE Trans. Nanotechnol. 2004, 3, 395–403.
  • Megha, R.; Ali, F. A.; Ravikiran, Y. T.; Ramana, C. H. V. V.; Kiran Kumar, A. B. V.; Mishra, D. K.; Vijayakumari, S. C.; Kim, D. Conducting Polymer Nanocomposite Based Temperature Sensors: A Review. Inorg. Chem. Commun. 2018, 98, 11–28.
  • Shen, J. T.; Buschhorn, S. T.; De Hosson, J. T. M.; Schulte, K.; Fiedler, B. Pressure and Temperature Induced Electrical Resistance Change in Nano-Carbon/Epoxy Composites. Compos. Sci. Technol. 2015, 115, 1–8. DOI: 10.1016/j.compscitech.2015.04.016.
  • Alamusi; Li, Y.; Hu, N.; Wu, L.; Yuan, W.; Peng, X.; Gu, B.; Chang, C.; Liu, Y.; Ning, H.; Li, J.; Atobe, S.; Fukunaga, H. Temperature-Dependent Piezoresistivity in an MWCNT/Epoxy Nanocomposite Temperature Sensor with Ultrahigh Performance. Nanotechnology 2013, 24, 455501.
  • Dai, H.; Thostenson, E. T.; Schumacher, T. Comparative Study of the Thermoresistive Behavior of Carbon Nanotube-Based Nanocomposites and Multiscale Hybrid Composites. Compos. B Eng. 2021, 222, 109068. DOI: 10.1016/j.compositesb.2021.109068.
  • Sanli, A. Investigation of Temperature Effect on the Electrical Properties of MWCNTs/Epoxy Nanocomposites by Electrochemical Impedance Spectroscopy. Adv. Compos. Mater. 2020, 29, 31–41. DOI: 10.1080/09243046.2019.1616409.
  • Lee, S. J.; Jung, Y. J.; Park, J.; Jang, S. H. Temperature Detectable Surface Coating with Carbon Nanotube/Epoxy Composites. Nanomaterials 2022, 12, 2369. DOI: 10.3390/nano12142369.
  • Kumar, A.; Hsieh, P. Y.; Shaikh, M. O.; Kumar, R. R.; Chuang, C. H. Flexible Temperature Sensor Utilizing MWCNT Doped PEG-PU Copolymer Nanocomposites. Micromachines 2022, 13, 197. DOI: 10.3390/mi13020197.
  • Verma, P.; Schiffer, A.; Kumar, S. Thermo-Resistive and Thermo-Piezoresistive Sensitivity of Carbon Nanostructure Engineered Thermoplastic Composites Processed via Additive Manufacturing. Polym. Test. 2021, 93, 106961. DOI: 10.1016/j.polymertesting.2020.106961.
  • Zhu, G.; Wang, F.; Chen, L.; Wang, C.; Xu, Y.; Chen, J.; Chang, X.; Zhu, Y. Highly Flexible TPU/SWCNTs Composite-Based Temperature Sensors with Linear Negative Temperature Coefficient Effect and Photo-Thermal Effect. Compos. Sci. Technol. 2022, 217, 109133.
  • Zhao, B.; Sivasankar, V. S.; Dasgupta, A.; Das, S. Ultrathin and Ultrasensitive Printed Carbon Nanotube-Based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities. ACS Appl. Mater. Interfaces. 2021, 13, 10257–10270.
  • Dios, J. R.; Garcia-Astrain, C.; Gonçalves, S.; Costa, P.; Lanceros-Méndez, S. Piezoresistive Performance of Polymer-Based Materials as a Function of the Matrix and Nanofiller Content to Walking Detection Application. Compos. Sci. Technol. 2019, 181, 107678. DOI: 10.1016/j.compscitech.2019.107678.
  • Sikarwar, S.; Satyendra; Singh, S.; Yadav, B. C. Review on Pressure Sensors for Structural Health Monitoring. Photonic Sens. 2017, 7, 294–304.
  • Sanli, A.; Ramalingame, R.; Kanoun, O. Piezoresistive Pressure Sensor Based on Carbon Nanotubes/Epoxy Composite under Cyclic Loading. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC); IEEE, 2018; pp 1–5. DOI: 10.1109/I2MTC.2018.8409527.
  • Zang, Y.; Zhang, F.; Di, C. A.; Zhu, D. Advances of Flexible Pressure Sensors toward Artificial Intelligence and Health Care Applications. Mater. Horiz. 2015, 2, 140–156.
  • Camilli, L.; Passacantando, M. Advances on Sensors Based on Carbon Nanotubes. Chemosensors 2018, 6, 62. DOI: 10.3390/chemosensors6040062.
  • Gerlach, C.; Krumm, D.; Illing, M.; Lange, J.; Kanoun, O.; Odenwald, S.; Hubler, A. Printed MWCNT-PDMS-Composite Pressure Sensor System for Plantar Pressure Monitoring in Ulcer Prevention. IEEE Sensors J. 2015, 15, 3647–3656. DOI: 10.1109/JSEN.2015.2392084.
  • Ferreira, A.; Correia, V.; Mendes, E.; Lopes, C.; Vaz, J. F. V.; Lanceros-Mendez, S. Piezoresistive Polymer-Based Materials for Real-Time Assessment of the Stump/Socket Interface Pressure in Lower Limb Amputees. IEEE Sensors J. 2017, 17, 2182–2190.
  • Maddipatla, D.; Narakathu, B. B.; Ali, M. M.; Chlaihawi, A. A.; Atashbar, M. Z. Development of a Novel Carbon Nanotube Based Printed and Flexible Pressure Sensor. 2017 IEEE Sensors Applications Symposium (SAS); IEEE, 2017; pp 1–4. DOI: 10.1109/Sas.2017.7894034.
  • Wang, P.; Geng, S.; Ding, T. Effects of Carboxyl Radical on Electrical Resistance of Multi-Walled Carbon Nanotube Filled Silicone Rubber Composite under Pressure. Compos. Sci. Technol. 2010, 70, 1571–1573. DOI: 10.1016/j.compscitech.2010.05.008.
  • Ubertini, F.; Laflamme, S.; Ceylan, H.; Luigi Materazzi, A.; Cerni, G.; Saleem, H.; D’Alessandro, A.; Corradini, A. Novel Nanocomposite Technologies for Dynamic Monitoring of Structures: A Comparison between Cement-Based Embeddable and Soft Elastomeric Surface Sensors. Smart Mater. Struct. 2014, 23, 045023.
  • García, D.; Trendafilova, I.; Inman, D. J. A Study on the Vibration-Based Self-Monitoring Capabilities of Nano-Enriched Composite Laminated Beams. Smart Mater. Struct. 2016, 25, 045011. DOI: 10.1088/0964-1726/25/4/045011.
  • Anand, S. V.; Mahapatra, D. R. Quasi-Static and Dynamic Strain Sensing Using Carbon Nanotube/Epoxy Nanocomposite Thin Films. Smart Mater. Struct. 2009, 18, 045013. DOI: 10.1088/0964-1726/18/4/045013.
  • Hwang, M. Y.; Kang, L. H. Analysis of Important Fabrication Factors That Determine the Sensitivity of MWCNT/Epoxy Composite Strain Sensors. Materials 2019, 12, 3875. DOI: 10.3390/ma12233875.
  • Scaccabarozzi, D.; Cinquemani, S.; Sbarufatti, C.; Jiménez-Suárez, A.; Sanchez, M.; Ureña, A. A Preliminary Study on Self Sensing Composite Structures with Carbon Nanotubes. 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2017; pp 434–438. DOI: 10.1109/MetroAeroSpace.2017.7999613.
  • Zeng, Z.; Liu, M.; Xu, H.; Liu, W.; Liao, Y.; Jin, H.; Zhou, L.; Zhang, Z.; Su, Z. A Coatable, Lightweight, Fast-Response Nanocomposite Sensor for the in-Situ Acquisition of Dynamic Elastic Disturbance: From Structural Vibration to Ultrasonic Waves. Smart Mater. Struct. 2016, 25, 065005. DOI: 10.1088/0964-1726/25/6/065005.
  • Huang, J.; Yang, X.; Liu, J.; Her, S. C.; Guo, J.; Gu, J.; Guan, L. Vibration Monitoring Based on Flexible Multi-Walled Carbon Nanotube/Polydimethylsiloxane Film Sensor and the Application on Motion Signal Acquisition. Nanotechnology 2020, 31, 335504.
  • Hwang, M. Y.; Han, D. H.; Kang, L. H. Piezoresistive Multi-Walled Carbon Nanotube/Epoxy Strain Sensor with Pattern Design. Materials 2019, 12, 3962. DOI: 10.3390/ma12233962.
  • Zhou, P.; Liao, Y.; Li, Y.; Pan, D.; Cao, W.; Yang, X.; Zou, F.; Zhou, L-m.; Zhang, Z.; Su, Z. An Inkjet-Printed, Flexible, Ultra-Broadband Nanocomposite Film Sensor for in-Situ Acquisition of High-Frequency Dynamic Strains. Compo. A Appl. Sci. Manuf. 2019, 125, 105554.
  • Xu, H.; Zeng, Z.; Wu, Z.; Zhou, L.; Su, Z.; Liao, Y.; Liu, M. Broadband Dynamic Responses of Flexible Carbon Black/Poly (Vinylidene Fluoride) Nanocomposites: A Sensitivity Study. Compos. Sci. Technol. 2017, 149, 246–253. DOI: 10.1016/j.compscitech.2017.06.010.
  • Choi, G.; Lee, J.; Cha, J.; Kim, Y.-J.; Choi, Y.-S.; Schulz, M.; Moon, C.; Lim, K.; Kim, S.; Kang, I. A Spray-on Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring. Sensors 2016, 16, 1171.
  • Putkis, O.; Dalton, R. P.; Croxford, A. J. The Influence of Temperature Variations on Ultrasonic Guided Waves in Anisotropic CFRP Plates. Ultrasonics 2015, 60, 109–116.
  • Boland, C. S.; Khan, U.; Backes, C.; O'Neill, A.; McCauley, J.; Duane, S.; Shanker, R.; Liu, Y.; Jurewicz, I.; Dalton, A. B.; Coleman, J. N. Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites. ACS Nano. 2014, 8, 8819–8830.
  • Fan, W.; Qiao, P. Vibration-Based Damage Identification Methods: A Review and Comparative Study. Struct. Health Monitor. 2011, 10, 83–111.
  • Liu, M.; Zeng, Z.; Xu, H.; Liao, Y.; Zhou, L.; Zhang, Z.; Su, Z. Applications of a Nanocomposite-Inspired in-Situ Broadband Ultrasonic Sensor to Acousto-Ultrasonics-Based Passive and Active Structural Health Monitoring. Ultrasonics 2017, 78, 166–174.
  • Zeng, Z.; Liu, M.; Xu, H.; Liao, Y.; Duan, F.; Zhou, L.-M.; Jin, H.; Zhang, Z.; Su, Z. Ultra-Broadband Frequency Responsive Sensor Based on Lightweight and Flexible Carbon Nanostructured Polymeric Nanocomposites. Carbon 2017, 121, 490–501.
  • Cao, W.; Zhou, P.; Liao, Y.; Yang, X.; Pan, D.; Li, Y.; Pang, B.; Zhou, L.; Su, Z. A Spray-on, Nanocomposite-Based Sensor Network for in-Situ Active Structural Health Monitoring. Sensors 2019, 19, 2077. DOI: 10.3390/s19092077.
  • Duan, F.; Liao, Y.; Zeng, Z.; Jin, H.; Zhou, L.; Zhang, Z.; Su, Z. Graphene-Based Nanocomposite Strain Sensor Response to Ultrasonic Guided Waves. Compos. Sci. Technol. 2019, 174, 42–49. DOI: 10.1016/j.compscitech.2019.02.011.
  • Liao, Y.; Zhou, P.; Pan, D.; Zhou, L. M.; Su, Z. An Ultra-Thin Printable Nanocomposite Sensor Network for Structural Health Monitoring. Struct. Health Monitor. 2019, 20, 894–903. DOI: 10.1177/1475921719859338.
  • Weng, Z.; Guan, R.; Zou, F.; Zhou, P.; Liao, Y.; Su, Z.; Huang, L.; Liu, F. A Highly Sensitive Polydopamine@ Hybrid Carbon Nanofillers Based Nanocomposite Sensor for Acquiring High-Frequency Ultrasonic Waves. Carbon 2020, 170, 403–413.
  • Li, Y.; Wang, K.; Su, Z. Dispersed Sensing Networks in Nano-Engineered Polymer Composites: From Static Strain Measurement to Ultrasonic Wave Acquisition. Sensors 2018, 18, 1398. DOI: 10.3390/s18051398.
  • Liao, Y.; Duan, F.; Zhang, H.; Lu, Y.; Zeng, Z.; Liu, M.; Xu, H.; Gao, C.; Zhou, L-m.; Jin, H.; Zhang, Z.; Su, Z. Ultrafast Response of Spray-on Nanocomposite Piezoresistive Sensors to Broadband Ultrasound. Carbon 2019, 143, 743–751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.