28,317
Views
55
CrossRef citations to date
0
Altmetric
Review

Sulfur nutrition and its role in plant growth and development

, , , &
Article: 2030082 | Received 08 Dec 2021, Accepted 12 Jan 2022, Published online: 07 Feb 2022

References

  • Li Q, Gao Y, Yang A. Sulfur homeostasis in plants. Int J Mol Sci. 2020;23:8926. doi:10.3390/ijms21238926.
  • Nakai Y, Maruyama-Nakashita A. Biosynthesis of sulfur-containing small biomolecules in plants. Int J Mol Sci. 2020;21(10):3470. doi:10.3390/ijms21103470.
  • Scherer HW, Pacyna S, Spoth KR, Schulz M. Low levels of ferredoxin, ATP and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biol and Fertility Soils. 2008;44(7):909–11. doi:10.1007/s00374-008-0273-7.
  • Aarabi F, Naake T, Fernie AR, Hoefgen R. Coordinating sulfur pools under sulfate deprivation. Trends Plant Sci. 2020;25:1227–1239. doi:10.1016/j.tplants.2020.07.007.
  • Leustek T, Saito K. Sulfate transport and assimilation in plants. Plant Physiol. 1999;120(3):637–644. doi:10.1104/pp.120.3.637.
  • Gohain BP, Rose TJ, Liu L, Barkla BJ, Raymond CA, King GJ. Remobilization and fate of sulphur in mustard. Ann Bot. 2019 August 16;124(3):471–480. doi:10.1093/aob/mcz101.
  • Jogawat A, Yadav B, Narayan OP. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol Plant. 2021b. doi:10.1111/ppl.13370.
  • Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, and Narayan OP. Plant mineral transport systems and the potential for crop improvement. Planta. 2021a;253:45. doi:10.1007/s00425-020-03551-7.
  • Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK. The rice mitochondrial iron transporter is essential for plant growth. Nat Commun. 2011;2:322. doi:10.1038/ncomms1326.
  • Leustek T, Martin MN, Bick JA, Davies JP. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Ann Review Plant Biol. 2000;51(1):141–165. doi:10.1146/annurev.arplant.51.1.141.
  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Rev Plant Biol. 2011;62:157–184. doi:10.1146/annurev-arplant-042110-103921.
  • Tabatabai MA, Bremner JM. Distribution of total and available sulfur in selected soils and soil profiles. Agron J. 1972;64(1):40–44. doi:10.2134/agronj1972.00021962006400010013x.
  • Blum SC, Lehmann J, Solomon D, Caires EF, Alleoni LR. Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma. 2013;200:156–164. doi:10.1016/j.geoderma.2013.02.003.
  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 2009;17(8):378–387. doi:10.1016/j.tim.2009.05.004.
  • Feinberg A, Stenke A, Peter T, Hinckley EL, Driscoll CT, Winkel LH. Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Commun Earth Environ. 2021;2(1):1–8. doi:10.1038/s43247-021-00172-0.
  • Craig K. A review of the chemistry, pesticide use, and environmental fate of sulfur dioxide, as used in California. Rev Environ Contam Toxicol. 2018;246(246):33–64. doi:10.1007/398_2018_11.
  • Griffith CM, Woodrow JE, Seiber JN. Environmental behavior and analysis of agricultural sulfur. Pest Manag Sci. 2015;71(11):1486–1496. doi:10.1002/ps.4067.
  • Etienne P, Sorin E, Maillard A, Gallardo K, Arkoun M, Guerrand J, Cruz F, Yvin JC, Ourry A. Assessment of sulfur deficiency under field conditions by single measurements of sulfur, chloride and phosphorus in mature leaves. Plants. 2018;7(2):37. doi:10.3390/plants7020037.
  • McGrath SP, Zhao FJ, Withers PJA. Development of sulphur deficiency in crops and its treatment. Proceedings-Fertiliser Society (United Kingdom).1996.
  • Hawkesford MJ, Kopriva S, De Kok LJ. Nutrient use efficiency in plants. Springer International Pu; 2016. doi:10.1007/978-3-319-10635-9.
  • Yu Z, She M, Zheng T, Diepeveen D, Islam S, Zhao Y, Zhang Y, Tang G, Zhang Y, Zhang J, et al. Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Comm Bio. 2021;4(1):1–6. doi:10.1038/s42003-021-02458-7.
  • Gilbert SM, Clarkson DT, Cambridge M, Lambers H, Hawkesford MJ. SO42-deprivation has an early effect on the content of ribulose-1, 5-bisphosphate carboxylase/oxygenase and photosynthesis in young leaves of wheat. Plant Physiol. 1997;115(3):1231–1239. doi:10.1104/pp.115.3.1231.
  • Jobe TO, Zenzen I, Rahimzadeh Karvansara P, and Kopriva S. Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. J Exp Bot. 2019;70(16):4211–4221. doi:10.1093/jxb/erz250.
  • Mitchell SC. Nutrition and sulfur. In: Advances in food and nutrition research. Vol. 96. Academic Press; 2021 Jan 1. p. 123–174. doi:10.1016/bs.afnr.2021.02.014.
  • Houhou M, Joutei KA, Louhalia S. Biomass production, chlorophyll content and morphorogical parameters are affected by sulfur deficiency in Eruca sativa L. Int J Ecol Environ Sci. 2018;44:67–75.
  • Filipek-Mazur B, Tabak M, Gorczyca O, Lisowska A. Effect of sulfur-containing fertilizers on the quantity and quality of spring oilseed rape and winter wheat yield. J Elementol. 2019;24(4). doi:10.5601/jelem.2019.24.1.1809.
  • Karmoker JL, Clarkson DT, Saker LR, Rooney JM, Purves JV. Sulphate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta. 1991;185(2):269–278. doi:10.1007/bf00194070.
  • Carciochi WD, Divito GA, Fernández LA, Echeverría HE. Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J Plant Nutrition. 2017;40(9):1231–1242. doi:10.1080/01904167.2016.1187740.
  • Haneklaus S, Bloem E, Schnug E, De Kok LJ, Stulen I. Sulfur. In: Barker AV, Pilbeam DJ, editors. Handbook of plant nutrition. CRC press; 2007. p. 183–238.
  • Camberato J, Casteel S. Keep an eye open for sulfur deficiency in wheat. Fertility update, dept of agronomy. Purdue university; 2010.
  • Gao Y, Li X, Tian QY, Wang BL, Zhang WH. Sulfur deficiency had different effects on Medicago truncatula ecotypes A17 and R108 in terms of growth, root morphology and nutrient contents. J Plant Nutr. 2016;39:301–314. doi:10.1080/01904167.2014.976344.
  • Klimont Z, Smith SJ, Cofala J. The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett. 2013;8(1):014003. doi:10.1088/1748-9326/8/1/014003.
  • Santana MM, Gonzalez JM, Clara MI. Inferring pathways leading to organic-sulfur mineralization in the Bacillales. Crit Rev Microbiol. 2016;42(1):31–45. doi:10.3109/1040841X.2013.877869.
  • Zublena JP, Baird JV, Lilly JP. Soil facts-nutrient content of fertilizer and organic materials. North Carolina Cooperative Extension Service. 1991.
  • Sawyer JE, Lang B, Barker DW. Sulfur fertilization response in Iowa corn and soybean production. 2012;51:39‐48.
  • Messick DL, Fan MX, De Brey C. Global sulfur requirement and sulfur fertilizers. FAL—Agric Res. 2005;283:97–104.
  • Camberato J, Casteel S. Sulfur deficiency. Purdue Univ Dep of Agronomy, Soil Fertility Update. 2017.
  • Kurmanbayeva M, Sekerova T, Tileubayeva Z, Kaiyrbekov T, Kusmangazinov A, Shapalov S, Madenova A, Burkitbayev M, Bachilova N. Influence of new sulfur-containing fertilizers on performance of wheat yield. Saudi J Bio Sci. 2021;(8):4644–4655. doi:10.1016/j.sjbs.2021.04.073.
  • Sun Z, Song J, Xin XA, Xie X, Zhao B. Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Front Microbiol. 2018;9:91. doi:10.3389/fmicb.2018.00091.
  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 2019;10:1068. doi:10.3389/fpls.2019.01068.
  • Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16(5):299–363. doi:10.1007/s00572-005-0033-6.
  • Morton JB, Benny GL. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon. 1990;37:471–491. doi:10.1017/S0953756200002860.
  • Nagahashi G, Douds DD. Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res. 2000;104(12):1453–1464. doi:10.1017/S0953756200002860.
  • Narayan OP, Verma N, Jogawat A, Dua M, Johri AK. Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT. Plant Cell. 2021;33:1268–1285. doi:10.1093/plcell/koab006.
  • Verma N, Narayan OP, Prasad D, Jogawat A, Panwar SL, Dua M, Johri AK. Functional characterization of a high affinity iron transporter (PiFTR) from the endophytic fungus Piriformospora indica and its role in plant growth and development. Environ Microbiol. 2021. doi:10.1111/1462-2920.15659.
  • Buchner P, Takahashi H, Hawkesford MJ. Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot. 2004;55(404):1765–1773. doi:10.1093/jxb/erh206.
  • Kertesz MA, Fellows E, Schmalenberger A. Rhizobacteria and plant sulfur supply. Adv Appl Microbiol. 2007;62:235–268. doi:10.1016/S0065-2164(07)62008-5.
  • Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol. 2014;204(3):609–619. doi:10.1111/nph.12949.
  • Gryndler M, Hršelová H, Stříteská D. Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol. 2000;45(6):545–551. doi:10.1007/BF02818724.
  • Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, van Dorst J, Ji M, Ferrari BC, Grogan P, Chu H, Snape I. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem. 2014;78:10–20. doi:10.1016/j.soilbio.2014.07.005.
  • Gahan J, Schmalenberger A. Bacterial and fungal communities in the mycorrhizospheres of Agrostis, Lolium and Plantago respond to inoculation with arbuscular mycorrhizal fungi. In: Diskin MG, editor. Agricultural research forum. Vol. 2013. Tullamore: Teagasc; 2013. p. 4.
  • Gahan J, Schmalenberger A. Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology. 2015;89:113–121. doi:10.1016/j.apsoil.2014.12.008.
  • Vilarino A, Frey B, Shüepp H. MES [2-(N-morpholine)-ethane sulphonic acid] buffer promotes the growth of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices in an alkaline sand. Biology and Fertility of Soils. 1997;25(1):79–81. doi:10.1007/s003740050284.
  • Abdel-Rahman SSA, El-Naggar A-RI. Promotion of rooting and growth of some types of bougainvilleas cutting by plant growth promoting rhizobacteria (pgpr) and arbuscular mycorrhizal fungi (amf) in combination with Indole-3-Butyric Acid (IBA) 2014. Ijsr. 3:97–108.
  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ. Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil. 1998;202(1):89–96. doi:10.1023/A:1004301423150.
  • Linderman RG. Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology. 1991;78(3):366–371. doi:10.1007/978-94-011-3336-4_73.
  • Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited. New Phytol. 2004;162(3):617–631. doi:10.1111/j.1469-8137.2004.01066.x.
  • Irshad U, Villenave C, Brauman A, Plassard C. Grazing by nematodes on rhizosphere bacteria enhances nitrate and phosphorus availability to Pinus pinaster seedlings. Soil Biol Biochem. 2011;43(10):2121–2126. doi:10.1016/j.soilbio.2011.06.015.
  • Mitra D, Uniyal N, Panneerselvam P, Senapati A, Ganeshamurthy AN. Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Ijlsas. 2019;1:1.
  • Agrawal M. Plant responses to atmospheric sulphur. In: Y.p A, Ahmad A, editors. Sulphur in plants. Dordrecht: Springer; 2003. p. 279–293. doi:10.1007/978-94-017-0289-8_15.
  • De Kok LJ, Tausz M. The role of glutathione in plant reaction and adaptation to air pollutants. In: Significance of glutathione to plant adaptation to the environment. Netherlands: Springer; 2001. p. 185–205. doi:10.1007/0-306-47644-4_8.
  • Takahashi H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. J Exp Bot. 2019;70(16):4075–4087. doi:10.1093/jxb/erz132.
  • De Kok LJ, Stuiver CEE, Westerman S, Stulen I. Elevated levels of hydrogen sulfide in the plant environment: nutrient or toxin. In: Air pollution and plant biotech. Japan: Springer; 2002. p. 201–219. doi :10.1007/978-4-431-68388-9_10.
  • Heinz E. Recent investigations on the biosynthesis of the plant sulfolipid. sulfur nutrition and assimilation in higher plants. Academic Publishing Bv. 1993;163–178.
  • Cram WJ. Uptake and transport of sulfate. Sulfur nutrition and sulfur assimilation in higher plants: fundamental, environmental and agricultural aspects. SPB Academic Publishing bv; 1990. p. 3–11.
  • Kopriva S, Koprivova A. Sulphate assimilation: a pathway which likes to Surprise. In: Sulphur in plants. Netherlands: Springer; 2003. p. 87–112. doi:10.1007/978-94-017-0289-8_5.
  • Sbodio JI, Snyder SH, Paul BD. Regulators of the transsulfuration pathway. Br J Pharmacol. 2019;176(4):583–593. doi:10.1111/bph.14446.
  • Kopriva S, Malagoli M, Takahashi H. Sulfur nutrition: impacts on plant development, metabolism, and stress responses. J Exp Bot. 2019;70(16):4069–4073. doi:10.1093/jxb/erz319.
  • Marietou A, Røy H, Jørgensen BB, Kjeldsen KU. Sulfate transporters in dissimilatory sulfate reducing microorganisms: a comparative genomics analysis. Front Microbiol. 2018;9:309. doi:10.3389/fmicb.2018.00309.
  • Milton H, Reddy VJ, Tamang D, Västermark A. The transporter classification database. Nucleic Acids Res. 2014;4(2):251–258. doi:10.1093/nar/gkt1097.
  • Sandal NN, Marcker KA. Similarities between a soybean nodulin, Neurospora crassa sulphate permease II and a putative tumor suppressor. Trends Biochem Sci. 1994;19:19. doi:10.1016/0968-0004(94)90168-6.
  • Smith FW, Hawkesford MJ, Prosser IM, Clarkson D. Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol General Gen. 1995b;247(6):709–715. doi:10.1007/BF00290402.
  • Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med. 2013;34(2–3):494–515. doi:10.1016/j.mam.2012.07.009.
  • Jiang Z, Grichtchenko II, Boron WF, and Aronson PS. Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem. 2002;277(37):33963–33967. doi:10.1074/jbc.M202660200.
  • Smith FW, Ealing PM, Hawkesford MJ, and Clarkson DT. Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA. 1995a;92(20):9373–9377. doi:10.1073/pnas.92.20.9373.
  • Wang L, Chen K, Zhou M. Structure and function of an Arabidopsis thaliana sulfate transporter. Nat Comm. 2021;12(1):1–8. doi:10.1038/s41467-021-24778-2.
  • Breton A, Surdin-Kerjan Y. Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol. 1977;132(1):224–232. doi:10.1128/JB.132.1.224-232.1977.
  • Fuentes-Lara LO, Medrano-Macías J, Pérez-Labrada F, Rivas-Martínez EN, García-Enciso EL, González-Morales S, Juárez-Maldonado A, Rincón-Sánchez F, Benavides-Mendoza A. From elemental sulfur to hydrogen sulfide in agricultural soils and plants. Molecules. 2019;24(12):2282. doi:10.3390/molecules24122282.
  • Maruyama-Nakashita A. Metabolic changes sustain the plant life in low-sulfur environments. Curr Opin Plant Biol. 2017;39:144–151. doi:10.1016/j.pbi.2017.06.015.
  • Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB. SULTR 3; 1 is a chloroplast‐localized sulfate transporter in Arabidopsis thaliana. Plant J. 2013;73(4):607–616. doi:10.1111/tpj.12059.
  • Aghajanzadeh T, Hawkesford MJ, De Kok LJ. Atmospheric H2S and SO2 as sulfur sources for Brassica juncea and Brassica rapa: regulation of sulfur uptake and assimilation. Environ Exp Bot. 2016;124:1. doi:10.1016/j.envexpbot.2015.12.001.
  • Stimler K, Montzka SA, Berry JA, Rudich Y, Yakir D. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. New Phytol. 2010;186(4):869–878. doi:10.1111/j.1469-8137.2010.03218.x.
  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics. 1997;145(3):627–635. doi:10.1093/genetics/145.3.627.
  • Ketter JS, Marzluf GA. Molecular cloning and analysis of the regulation of cys-14+, a structural gene of the sulfur regulatory circuit of Neurospora crassa. Mol Cell Biol. 1988;8(4):1504–1508. doi:10.1128/mcb.8.4.1504.
  • Marzluf GA. Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Ann Rev Microbiol. 1997;51(1):73–96. doi:10.1146/annurev.micro.51.1.73.
  • Van De Kamp M, Pizzinini E, Vos A, van der Lende TR, Schuurs TA, Newbert RW, Driessen AJ, Konings WN, Driessen AJM. Sulfate Transport in Penicillium chrysogenum: cloning and characterization of the sutA and sutB Genes. J Bacterial. 1999;181(23):7228–7234. doi:10.1128/JB.181.23.7228-7234.1999.
  • Van De Kamp M, Schuurs TA, Vos A, van der Lende TR, Konings WN, Driessen AJ. Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. App Environ Microbiol. 2000;66(10):4536–4538. doi:10.1128/aem.66.10.4536-4538.2000.
  • Linder T. Assimilation of alternative sulfur sources in fungi. World J Microbiol Biotechnol. 2018;34(4):1–7. doi:10.1007/s11274-018-2435-6.
  • Huberman LB, Wu VW, Lee J, Daum C, O’Malley RC, Glass NL. Aspects of the Neurospora crassa sulfur starvation response are revealed by transcriptional profiling and DNA affinity purification sequencing. Msphere. 2021;6(5):e00564–21. doi:10.1128/mSphere.00564-21.
  • Piłsyk S, Mieczkowski A, Golan MP, Wawrzyniak A, Kruszewska JS. Internalization of the Aspergillus nidulans AstA Transporter into Mitochondria Depends on Growth Conditions, and Affects ATP Levels and Sulfite Oxidase Activity. Int J Mol Sci. 2020;21(20):7727. doi:10.3390/ijms21207727.
  • Piłsyk S, Natorff R, Sieńko M, Paszewski A. Sulfate transport in Aspergillus nidulans: a novel gene encoding alternative sulfate transporter. Fungal Gen Biol. 2007;44(8):715–725. doi:10.1016/j.fgb.2006.11.007.
  • Arst HN. Genetic analysis of the first steps of sulphate metabolism in Aspergillus nidulans. Nature. 1968;219(5151):268–270. doi:10.1038/219268a0.
  • Viti C, Marchi E, Decorosi F, Giovannetti L. Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiol Rev. 2014;38(4):633–659. doi:10.1111/1574-6976.12051.
  • Hansen J, Francke Johannesen P. Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol General Genet. 2000;263(3):535–542. doi:10.1007/s004380051199.
  • Chen Y, Zhang Z, Li B, Tian S. PeMetR-mediated sulfur assimilation is essential for virulence and patulin biosynthesis in Penicillium expansum. Environ Microbiol. 2021;23(9):5555–5568. doi:10.1111/1462-2920.15704.
  • Natorff R, Sieńko M, Brzywczy J, Paszewski A. The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol Microbiol. 2003;49(4):1081–1094. doi:10.1046/j.1365-2958.2003.03617.x.
  • Paszewski A, Natorff R, Piotrowska M, Brzywczy J, Sienko M, Grynberg M, Turner G. Regulation of sulfur amino acid biosynthesis in Aspergillus nidulans: physiological and genetical aspects. Sulfur nutrition and sulfur assimilation in higher plants. Bern: Paul Haupt Publishers; 2000;93–105. doi:10.1007/978-3-662-06064-3_18.
  • Samanta S, Singh A, Roychoudhury A. Involvement of sulfur in the regulation of abiotic stress tolerance in plants. Protective chemical agents in the amelioration of plant abiotic stress. Biochemical and Molecular Perspectives. 2020;22:437–466. doi:10.1002/9781119552154.ch22.
  • Adak MK, Saha I, Dolui D, Debnath SC. Sulfur in soil: abiotic stress signaling, transmission and induced physiological responses in plants. In: Soil science: fundamentals to recent advances. Singapore: Springer; 2021. p. 469–492. doi:10.1007/978-981-16-0917-6_24.
  • Hasanuzzaman M, Bhuyan MH, Mahmud JA, Nahar K, Mohsin SM, Parvin K, Fujita M. Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. Plant Signal Behav. 2018;13(5):e1477905. doi:10.1080/15592324.2018.1477905.
  • Yadav B, Dubey R, Gnanasekaran P, Narayan OP. OMICS approaches towards understanding plant's responses to counterattack heavy metal stress: An insight into molecular mechanisms of plant defense. Plant Gene. 2021b;28:100333. doi:10.1016/j.plgene.2021.100333.
  • Yadav B, Jogawat A, Gnanasekaran P, Kumari P, Lakra N, Lal SK, Pawar J, Narayan OP. An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. Plant Gene. 2021c;25:100264. doi:10.1016/j.plgene.2020.100264.
  • Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci. 2015;6:210. doi:10.3389/fpls.2015.00210.
  • Jogawat A, Yadav B, Lakra N, Singh AK, and Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiol Plant. 2021a;172(2):1106–1132. doi:10.1111/ppl.13328.
  • Khanna K, Sharma N, Kour S, Ali M, Ohri P, Bhardwaj R. Hydrogen Sulfide: a robust combatant against abiotic stresses in plants. Hydrogen. 2021;2(3):319–342. doi:10.3390/hydrogen2030017.
  • Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BM, Ali HM, Kalaji HM, Fahad S, Rajput VD, and Narayan, OP. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. Environ Pollut. 2021;290:117953. doi:10.1016/j.envpol.2021.117953.
  • Wang L, Wan R, Shi Y, Xue S. Hydrogen sulfide activates S-type anion channel via OST1 and Ca2+ modules. Mol Plant. 2016;9(3):489–491. doi:10.1016/j.molp.2015.11.010.
  • Yadav B, Jogawat A, Rahman MS, and Narayan OP. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Rep. 2021d;23:101040. doi:10.1016/j.genrep.2021.101040.
  • Li ZG, Min X, Zhou ZH. Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci. 2016;7:1621. doi:10.3389/fpls.2016.01621.
  • Hancock JT, Whiteman M. Hydrogen sulfide and cell signaling: team player or referee?. Plant Physiol Biochem. 2014;78:37–42. doi:10.1016/j.plaphy.2014.02.012.
  • Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 2008;6:763. doi:10.1038/nrmicro1987.
  • Akum FN, Steinbrenner J, Biedenkopf D, Imani J, Kogel KH. The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. Front Plant Sci. 2015;6:906. doi:10.3389/fpls.2015.00906.
  • Jogawat A, Vadassery J, Verma N, Oelmüller R, Dua M, Nevo E, Johri AK. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci Rep. 2016;6:36765. doi:10.1038/srep36765.
  • Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK. Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behavior. 2011;6(5):723–725. doi:10.4161/psb.6.5.15106.
  • Prasad D, Verma N, Bakshi M, Narayan OP, Singh AK, Dua M, Johri AK. Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front Microbiol. 2019;9:3231. doi:10.3389/fmicb.2018.03231.
  • Johri AK, Oelmüller R, Dua M, Yadav V, Kumar M, Tuteja N, Varma A, Bonfante P, Persson BL, Stroud RM. Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Front Microbiol. 2015;6:984. doi:10.3389/fmicb.2015.00984.
  • Kumar M, Yadav V, Tuteja N, Johri AK. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiol. 2009;155:780–790. doi:10.1099/mic.0.019869-0.
  • Narayan OP, Verma N, Singh AK, Oelmüller R, Kumar M, Prasad D, Kapoor R, Dua M, Johri AK. Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Sci Rep. 2017;7:13553. doi:10.1038/s41598-017-12944-w.
  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken, P, Kogel, KH. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA. 2005;102:13386–13391. doi:10.1073/pnas.0504423102.
  • Aschheim K, Cervoni N, DeFrancesco L, Hare P, Taroncher-Oldenburg G. Plant probiotic (News and Views). Nat Biotech. 2005;23:10.1038.