3,019
Views
5
CrossRef citations to date
0
Altmetric
Review

Genetic regulation of lateral root development

ORCID Icon, , ORCID Icon, , , , & ORCID Icon show all
Article: 2081397 | Received 06 Apr 2022, Accepted 18 May 2022, Published online: 01 Jun 2022

References

  • la Cruz E M-D, García-Ramírez E, Vázquez-Ramos JM, de la Cruz H R, López-Bucio J. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings. Journal of Plant Physiology. 2015;176:147–16. doi:10.1016/j.jplph.2014.11.012.
  • Hochholdinger F, Zimmermann R. Conserved and diverse mechanisms in root development. Current Opinion in Plant Biology. 2008;11(1):70–74. doi:10.1016/j.pbi.2007.10.002.
  • Nibau C, Gibbs DJ, Coates JC. Branching out in new directions: the control of root architecture by lateral root formation. New Phytol. 2008;179(3):595–614. doi:10.1111/j.1469-8137.2008.02472.x.
  • Malamy JE, Benfey PN. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 1997 CambridgeEngland;124(1):33–44. doi:10.1242/dev.124.1.33.
  • Péret B, Larrieu A, Bennett MJ. Lateral root emergence: a difficult birth. J Exp Bot. 2009b;60(13):3637–3643. doi:10.1093/jxb/erp232.
  • Bennett T, Scheres B. Root development-two meristems for the price of one? Current Topics in Developmental Biology. 2010;91:67–102. doi:10.1016/s0070-2153(10)91003-x.
  • Scheres B. Stem-cell niches: nursery rhymes across kingdoms. Nature Reviews Molecular Cell Biology. 2007;8(5):345–354. doi:10.1038/nrm2164.
  • Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM. Formation of lateral root meristems is a two-stage process. Development. 1995 Cambridge, England;121(10):3303–3310. doi:10.1242/dev.121.10.3303.
  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115(5):591–602. doi:10.1016/s0092-8674(03)00924-3.
  • Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ. Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 2009a;14(7):399–408. doi:10.1016/j.tplants.2009.05.002.
  • Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Pařezová M, Petrášek J, Friml J, Kleine-Vehn J, et al. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Developmental Cell. 2011;21(4):796–804. doi:10.1016/j.devcel.2011.08.014.
  • Marhavý P, Duclercq J, Weller B, Feraru E, Bielach A, Offringa R, Friml J, Schwechheimer C, Murphy A, Benková E. Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr Biol: CB. 2014;24(9):1031–1037. doi:10.1016/j.cub.2014.04.002.
  • Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA, Pasternak T, Palme K, Mironova VV. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biology. 2016;16(S1):5. doi:10.1186/s12870-015-0685-0. 6 Suppl 1 (Suppl 1)
  • Jia W, Li B, Li S, Liang Y, Wu X, Ma M, Wang J, Gao J, Cai Y, Zhang Y, et al. Mitogen-activated protein kinase cascade mkk7-mpk6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis. PLoS Biol. 2016;14(9):e1002550. doi:10.1371/journal.pbio.1002550.
  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell. 2007;130(6):1044–1056. doi:10.1016/j.cell.2007.07.033.
  • Zhang J, Nodzynski T, Pencík A, Rolcík J, Friml J. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci U S A. 2010;107(2):918–922. doi:10.1073/pnas.0909460107.
  • Hofhuis H, Laskowski M, Du Y, Prasad K, Grigg S, Pinon V, Scheres B. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. Curr Biol: CB. 2013;23(11):956–962. doi:10.1016/j.cub.2013.04.048.
  • Du Y, Scheres B. PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth. Proc Natl Acad Sci U S A. 2017;114(44):11709–11714. doi:10.1073/pnas.1714410114.
  • Beeckman T, Burssens S, Inzé D. The peri-cell-cycle in Arabidopsis. J Exp Bot. 2001;52( Spec Issue):403–411. doi:10.1093/jexbot/52.suppl_1.403.
  • Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant Molecular Biology. 2009;69(4):437–449. doi:10.1007/s11103-008-9417-2.
  • Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science. 2010;329(5997):1306–1311. doi:10.1126/science.1191937. New York, NY
  • Xuan W, Audenaert D, Parizot B, Möller BK, Njo MF, De Rybel B, De Rop G, Van Isterdael G, Mähönen AP, Vanneste S, et al. Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root. Curr Biol: CB. 2015;25(10):1381–1388. doi:10.1016/j.cub.2015.03.046.
  • De Smet I, Tetsumura T, De Rybel B, Frei Dit Frey N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. development (Cambridge. England). 2007;134(4):681–690. doi:10.1242/dev.02753.
  • Fukaki H, Tameda S, Masuda H, Tasaka M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. The Plant J: for Cell and Mol Biol. 2002;29(2):153–168. doi:10.1046/j.0960-7412.2001.01201.x.
  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005;17(2):444–463. doi:10.1105/tpc.104.028316.
  • Rogg LE, Lasswell J, Bartel B. A gain-of-function mutation in iaa28 suppresses lateral root development. Plant Cell. 2001;13(3):465–480. doi:10.1105/tpc.13.3.465.
  • Uehara T, Okushima Y, Mimura T, Tasaka M, Fukaki H. Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. Plant Cell Physiol. 2008;49(7):1025–1038. doi:10.1093/pcp/pcn079.
  • Yang X, Lee S, So JH, Dharmasiri S, Dharmasiri N, Ge L, Jensen C, Hangarter R, Hobbie L, Estelle M. The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1). The Plant J: for Cell and Mol Biol. 2004;40(5):772–782. doi:10.1111/j.1365-313X.2004.02254.x.
  • Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. The Plant J: for Cell and Mol Biol. 2005;43(1):118–130. doi:10.1111/j.1365-313X.2005.02432.x.
  • Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. The Plant J: for Cell and Mol Biol. 2004;40(3):333–343. doi:10.1111/j.1365-313X.2004.02220.x.
  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell. 2007;19(1):118–130. doi:10.1105/tpc.106.047761.
  • Muralidhara P, Weiste C, Collani S, Krischke M, Kreisz P, Draken J, Feil R, Mair A, Teige M, Müller MJ, et al. (2021) Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling. Proceedings of the National Academy of Sciences of the United States of America 118 (37): doi:10.1073/pnas.2106961118
  • Chen J, De Gernier H, Safi A, Beeckman T, Vanneste S. The mechanism of auxin transport in lateral root spacing. Mol Plant. 2021;14(5):708–710. doi:10.1016/j.molp.2021.02.008.
  • Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H. Multiple AUX/IAA–ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2012;367(1595):1461–1468. doi:10.1098/rstb.2011.0232. 1595
  • Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L. Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci. 2013;18(8):450–458. doi:10.1016/j.tplants.2013.04.006.
  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 2001;13(4):843–852. doi:10.1105/tpc.13.4.843.
  • Singh S, Yadav S, Singh A, Mahima M, Singh A, Gautam V, Sarkar AK. Auxin signaling modulates LATERAL ROOT PRIMORDIUM1 (LRP1) expression during lateral root development in Arabidopsis. The Plant J: for Cell and Mol Biol. 2020;101(1):87–100. doi:10.1111/tpj.14520.
  • Osmont KS, Sibout R, Hardtke CS. Hidden branches: developments in root system architecture. Annual Review of Plant Biology. 2007;58(1):93–113. doi:10.1146/annurev.arplant.58.032806.104006.
  • Cosgrove DJ. Loosening of plant cell walls by expansins. Nature. 2000;407(6802):321–326. doi:10.1038/35030000.
  • Marín-Rodríguez MC, Orchard J, Seymour GB. Pectate lyases, cell wall degradation and fruit softening. J Exp Bot. 2002;53(377):2115–2119. doi:10.1093/jxb/erf089.
  • Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, et al. The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol. 2008;10(8):946–954. doi:10.1038/ncb1754.
  • Wu G, Lewis DR, Spalding EP. Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell. 2007;19(6):1826–1837. doi:10.1105/tpc.106.048777.
  • Gu X, Xu T, He Y. A histone H3 lysine-27 methyltransferase complex represses lateral root formation in Arabidopsis thaliana. Mol Plant. 2014;7(6):977–988. doi:10.1093/mp/ssu035.
  • Wang X, Gao J, Gao S, Li Z, Kuai B, Ren G. REF6 promotes lateral root formation through de-repression of PIN1/3/7 genes. Journal of Integrative Plant Biology. 2019;61(4):383–387. doi:10.1111/jipb.12726.
  • Leasure CD, Tong H, Yuen G, Hou X, Sun X, He ZH. ROOT UV-B SENSITIVE2 acts with ROOT UV-B SENSITIVE1 in a root ultraviolet B-sensing pathway. Plant Physiol. 2009;150(4):1902–1915. doi:10.1104/pp.109.139253.
  • Tong H, Leasure CD, Hou X, Yuen G, Briggs W, He ZH. Role of root UV-B sensing in Arabidopsis early seedling development. Proc Natl Acad Sci U S A. 2008;105(52):21039–21044. doi:10.1073/pnas.0809942106.
  • Yang Y, Zhang L, Chen P, Liang T, Li X, Liu H. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. The EMBO Journal. 2020;39(2):e101928. doi:10.15252/embj.2019101928.
  • Majumdar P, Karidas P, Nath U. The TARANI/ UBIQUITIN PROTEASE 14 protein is required for lateral root development in Arabidopsis. Plant Signaling & Behavior. 2021;16(3):1860386. doi:10.1080/15592324.2020.1860386.
  • Lv B, Wei K, Hu K, Tian T, Zhang F, Yu Z, Zhang D, Su Y, Sang Y, Zhang X, et al. MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Mol Plant. 2021;14(2):285–297. doi:10.1016/j.molp.2020.11.011.
  • Huang R, Zheng R, He J, Zhou Z, Wang J, Xiong Y, Xu T. Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc Natl Acad Sci U S A. 2019;116(42):21285–21290. doi:10.1073/pnas.1910916116.
  • Lampard GR, Lukowitz W, Ellis BE, Bergmann DC. Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations. Plant Cell. 2009;21(11):3506–3517. doi:10.1105/tpc.109.070110.
  • Zhao F, Zheng YF, Zeng T, Sun R, Yang JY, Li Y, Ren DT, Ma H, Xu ZH, Bai SN. Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 kinase is required for anther development. Plant Physiol. 2017a;173(4):2265–2277. doi:10.1104/pp.16.01765.
  • Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell. 2005;17(11):3007–3018. doi:10.1105/tpc.105.035451.
  • Riefler M, Novak O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2006;18(1):40–54. doi:10.1105/tpc.105.037796.
  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15(11):2532–2550. doi:10.1105/tpc.014928.
  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell. 2007;19(12):3889–3900. doi:10.1105/tpc.107.055863.
  • Jing H, Strader LC. Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences. 2019;20(3):486. doi:10.3390/ijms20030486.
  • Brady SM, Sarkar SF, Bonetta D, McCourt P. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. The Plant J: for Cell and Mol Biol. 2003;34(1):67–75. doi:10.1046/j.1365-313x.2003.01707.x.
  • Signora L, De Smet I, Foyer CH, Zhang H. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. The Plant J: for Cell and Mol Biol. 2001;28(6):655–662. doi:10.1046/j.1365-313x.2001.01185.x.
  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol. 2004;134(4):1624–1631. doi:10.1104/pp.103.036897.
  • Ferguson BJ, Ross JJ, Reid JB. Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol. 2005;138(4):2396–2405. doi:10.1104/pp.105.062414.
  • Fu X, Harberd NP. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003;421(6924):740–743. doi:10.1038/nature01387.
  • Negi S, Ivanchenko MG, Muday GK. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. The Plant J: for Cell and Mol Biol. 2008;55(2):175–187. doi:10.1111/j.1365-313X.2008.03495.x.
  • Ivanchenko MG, Muday GK, Dubrovsky JG. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. The Plant J: for Cell and Mol Biol. 2008;55(2):335–347. doi:10.1111/j.1365-313X.2008.03528.x.
  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, et al. Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell. 2009;21(5):1495–1511. doi:10.1105/tpc.108.064303.
  • Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Xiang CB. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nature Communications. 2014;5(1):5833. doi:10.1038/ncomms6833.
  • Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier JP, Bécard G, Belausov E, et al. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta. 2011;233(1):209–216. doi:10.1007/s00425-010-1310-y.
  • Jourquin J, Fukaki H, Beeckman T. Peptide-receptor signaling controls lateral root development. Plant Physiol. 2020;182(4):1645–1656. doi:10.1104/pp.19.01317.
  • Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, Matsubayashi Y. A peptide hormone required for casparian strip diffusion barrier formation in Arabidopsis roots. Science. 2017;355(6322):284–286. doi:10.1126/science.aai9057. New York, NY
  • Ghorbani S, Lin YC, Parizot B, Fernandez A, Njo MF, Van de Peer Y, Beeckman T, Hilson P. Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays. J Exp Bot. 2015;66(17):5257–5269. doi:10.1093/jxb/erv346.
  • Walker JC, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature. 1990;345(6277):743–746. doi:10.1038/345743a0.
  • De Smet I, Vassileva V, De Rybel B, Levesque MP, Grunewald W, Van Damme D, Van Noorden G, Naudts M, Van Isterdael G, De Clercq R, et al. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science (New York, NY). 2008;322(5901):594–597. doi:10.1126/science.1160158.
  • Kumpf RP, Shi CL, Larrieu A, Stø IM, Butenko MA, Péret B, Riiser ES, Bennett MJ, Aalen RB. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proc Natl Acad Sci U S A. 2013;110(13):5235–5240. doi:10.1073/pnas.1210835110.
  • Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science. 2014;346(6207):343–346. doi:10.1126/science.1257800. New York, NY
  • Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN, Sawa S, Fukuda H, von Wirén N, Takahashi H, et al. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci U S A. 2014;111(5):2029–2034. doi:10.1073/pnas.1319953111.
  • Cho H, Ryu H, Rho S, Hill K, Smith S, Audenaert D, Park J, Han S, Beeckman T, Bennett MJ, et al. A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat Cell Biol. 2014;16(1):66–76. doi:10.1038/ncb2893.
  • Ohyama K, Ogawa M, Matsubayashi Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. The Plant J: for Cell and Mol Biol. 2008;55(1):152–160. doi:10.1111/j.1365-313X.2008.03464.x.
  • Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot. 2013;64(17):5395–5409. doi:10.1093/jxb/ert369.
  • Delay C, Imin N, Djordjevic MA. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J Exp Bot. 2013;64(17):5383–5394. doi:10.1093/jxb/ert332.
  • Roberts I, Smith S, De Rybel B, Van Den Broeke J, Smet W, De Cokere S, Mispelaere M, De Smet I, Beeckman T. The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. J Exp Bot. 2013;64(17):5371–5381. doi:10.1093/jxb/ert331.
  • Roberts I, Smith S, Stes E, De Rybel B, Staes A, van de Cotte B, Njo MF, Dedeyne L, Demol H, Lavenus J, et al. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J Exp Bot. 2016;67(16):4889–4899. doi:10.1093/jxb/erw231.
  • Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell. 2003;15(10):2296–2307. doi:10.1105/tpc.014365.
  • Cho SK, Larue CT, Chevalier D, Wang H, Jinn TL, Zhang S, Walker JC. Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2008;105(40):15629–15634. doi:10.1073/pnas.0805539105.
  • Bergonci T, Ribeiro B, Ceciliato PH, Guerrero-Abad JC, Silva-Filho MC, Moura DS. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot. 2014;65(8):2219–2230. doi:10.1093/jxb/eru099.
  • Atkinson NJ, Lilley CJ, Urwin PE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 2013;162(4):2028–2041. doi:10.1104/pp.113.222372.
  • Murphy E, Vu LD, Van den Broeck L, Lin Z, Ramakrishna P, van de Cotte B, Gaudinier A, Goh T, Slane D, Beeckman T, et al. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation . J Exp Bot. 2016;67(16):4863–4875. doi:10.1093/jxb/erw281.
  • Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hématy K, Renou J, Landrein B, et al. Receptor Kinase THESEUS1 is a RAPID alkalinization factor 34 receptor in Arabidopsis. Curr Biol: CB. 2018;28(15):2452–2458.e2454. doi:10.1016/j.cub.2018.05.075.
  • Dong Q, Zhang Z, Liu Y, Tao LZ, Liu H. FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Letters. 2019;593(1):97–106. doi:10.1002/1873-3468.13292.
  • Vie AK, Najafi J, Liu B, Winge P, Butenko MA, Hornslien KS, Kumpf R, Aalen RB, Bones AM, Brembu T. The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis : phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. J Exp Bot. 2015;66(17):5351–5365. doi:10.1093/jxb/erv285.
  • Hirota A, Kato T, Fukaki H, Aida M, Tasaka M. The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell. 2007;19(7):2156–2168. doi:10.1105/tpc.107.050674.
  • Kang NY, Lee HW, Kim J. The AP2/EREBP gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis. Plant Cell Physiol. 2013;54(8):1326–1334. doi:10.1093/pcp/pct081.
  • Toyokura K, Goh T, Shinohara H, Shinoda A, Kondo Y, Okamoto Y, Uehara T, Fujimoto K, Okushima Y, Ikeyama Y, et al. Lateral inhibition by a peptide hormone-receptor cascade during Arabidopsis lateral root founder cell formation. Developmental Cell. 2019;48(1):64–75.e65. doi:10.1016/j.devcel.2018.11.031.
  • Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science. 2010;329(5995):1065–1067. doi:10.1126/science.1191132. New York, NY
  • Whitford R, Fernandez A, Tejos R, Pérez AC, Kleine-Vehn J, Vanneste S, Drozdzecki A, Leitner J, Abas L, Aerts M, et al. GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Developmental Cell. 2012;22(3):678–685. doi:10.1016/j.devcel.2012.02.002.
  • Fernandez A, Drozdzecki A, Hoogewijs K, Vassileva V, Madder A, Beeckman T, Hilson P. The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation. J Exp Bot. 2015;66(17):5245–5256. doi:10.1093/jxb/erv329.
  • Meng L, Buchanan BB, Feldman LJ, Luan S. CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis. Proc Natl Acad Sci U S A. 2012;109(5):1760–1765. doi:10.1073/pnas.1119864109.
  • Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X, et al. RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res. 2016;26(6):686–698. doi:10.1038/cr.2016.63.
  • Kutschmar A, Rzewuski G, Stührwohldt N, Beemster GTS, Inzé D, Sauter M. PSK-α promotes root growth in Arabidopsis. The New Phytologist The New phytologist. 2009;181(4):820–831. doi:10.1111/j.1469-8137.2008.02710.x.
  • Zhang H, Forde BG. Regulation of Arabidopsis root development by nitrate availability. J Exp Bot. 2000;51(342):51–59. doi:10.1093/jxb/51.342.51.
  • Zhang H, Jennings A, Barlow PW, Forde BG. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A. 1999;96(11):6529–6534. doi:10.1073/pnas.96.11.6529.
  • Malamy JE, Ryan KS. Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol. 2001;127(3):899–909. doi:10.1104/pp.010406.
  • Zhang H, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science. 1998;279(5349):407–409. doi:10.1126/science.279.5349.407. New York, NY
  • Remans T, Nacry P, Pervent M, Filleur S, Gojon A, Mounier E, Tillard P, Forde BG, Gojon A. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Procnatl Acadsciusa. 2006;103(50):19206–19211. doi:10.1073/pnas.0605275103.
  • Guo FQ, Wang R, Crawford C, Crawford NM. The Arabidopsis dual-affinity nitrate transporter gene atnrt1.1 (chl1) is activated and functions in nascent organ development during vegetative and reproductive Growth. THE PLANT CELL ONLINE. 2001;13(8):1761–1777. doi:10.1105/TPC.010126.
  • Mu?Os S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Gojon LA, Gojon A. Transcript Profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1[W]. Plant Cell. 2004;16(9):2433–2447. doi:10.1105/tpc.104.024380.
  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell & Environment. 2005;28(4):500–512. doi:10.1111/j.1365-3040.2005.01292.x.
  • Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 2005;138(4):2061–2074. doi:10.1104/pp.105.060061.
  • Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 2004;136(1):2556–2576. doi:10.1104/pp.104.046482.
  • Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, Benkova E, Martinière A, Bach L, Krouk G, Gojon A, et al. Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor. Plant Physiol. 2016;172(2):1237–1248. doi:10.1104/pp.16.01047.
  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell. 2010;18(6):927–937. doi:10.1016/j.devcel.2010.05.008.
  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2010;107(9):4477–4482. doi:10.1073/pnas.0909571107.
  • Vidal EA, Moyano TC, Riveras E, Contreras-López O, Gutiérrez RA. Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots. Proc Natl Acad Sci U S A. 2013;110(31):12840–12845. doi:10.1073/pnas.1310937110.
  • Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant. 2014;7(11):1653–1669. doi:10.1093/mp/ssu088.
  • Lima JE, Kojima S, Takahashi H, von Wirén N, von Wirén N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell. 2010;22(11):3621–3633. doi:10.1105/tpc.110.076216.
  • Gruber BD, Giehl RF, Friedel S, von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013;163(1):161–179. doi:10.1104/pp.113.218453.
  • Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional Signals. Plant Cell. 2014;26(4):1480–1496. doi:10.1105/tpc.113.122101.
  • Zhao J, Wang W, Zhou H, Wang R, Zhang P, Wang H, Pan X, Xu J. Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in Arabidopsis. Frontiers in Plant Science. 2017b;8:272. doi:10.3389/fpls.2017.00272.
  • Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods. 2015;12(3):207–210., 202 p following 210. doi:10.1038/nmeth.3279.
  • Giehl RF, Lima JE, von Wirén N. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell. 2012;24(1):33–49. doi:10.1105/tpc.111.092973.
  • Olsen AN, Ernst HA, Leggio LL, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005;10(2):79–87. doi:10.1016/j.tplants.2004.12.010.
  • Xu P, Ma W, Hu J, Cai W, Qu L-J. The nitrate-inducible NAC transcription factor NAC056 controls nitrate assimilation and promotes lateral root growth in Arabidopsis thaliana. PLoS Genet. 2022;18(3):e1010090. doi:10.1371/journal.pgen.1010090.
  • Orosa-Puente B, Leftley N, von Wangenheim D, Banda J, Srivastava AK, Hill K, Truskina J, Bhosale R, Morris E, Srivastava M, et al. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science. 2018;362(6421):1407–1410. doi:10.1126/science.aau3956. New York, NY
  • Bao Y, Aggarwal P, Robbins NE 2nd, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T, et al. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci U S A. 2014;111(25):9319–9324. doi:10.1073/pnas.1400966111.
  • Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A, Ligeza A, Klein S, Sturrock C, Xuan W, Novák O, et al. The xerobranching response represses lateral root formation when roots are not in contact with water. Curr Biol: CB. 2018;28(19):3165–3173.e3165. doi:10.1016/j.cub.2018.07.074.
  • Zhan A, Schneider H, Lynch JP. Reduced lateral root branching density improves drought tolerance in Maize. Plant Physiol. 2015;168(4):1603–1615. doi:10.1104/pp.15.00187.
  • Ma JF, Goto S, Tamai K, Ichii M. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 2001;127(4):1773–1780. doi:10.1104/pp.010271.
  • van Gelderen K, Kang C, Paalman R, Keuskamp D, Hayes S, Pierik R. Far-red light detection in the shoot regulates lateral root development through the hy5 transcription factor. Plant Cell. 2018;30(1):101–116. doi:10.1105/tpc.17.00771.
  • Burssens S, Himanen K, van de Cotte B, Beeckman T, Van Montagu M, Inzé D, Verbruggen N. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta. 2000;211(5):632–640. doi:10.1007/s004250000334.
  • Shukla RK, Raha S, Tripathi V, Chattopadhyay D. Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol. 2006;142(1):113–123. doi:10.1104/pp.106.081752.
  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant J: for Cell and Mol Biol. 2005;44(6):903–916. doi:10.1111/j.1365-313X.2005.02575.x.
  • Zhao Y, Wang T, Zhang W, Li X. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytol. 2011;189(4):1122–1134. doi:10.1111/j.1469-8137.2010.03545.x.
  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT. Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot. 2004;55(407):2343–2351. doi:10.1093/jxb/erh276.
  • Deak KI, Malamy J. Osmotic regulation of root system architecture. The Plant J: for Cell and Mol Biol. 2005;43(1):17–28. doi:10.1111/j.1365-313X.2005.02425.x.
  • Xiong L, Wang RG, Mao G, Koczan JM. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol. 2006;142(3):1065–1074. doi:10.1104/pp.106.084632.
  • Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature. 2013;496(7444):181–186. doi:10.1038/nature12030.
  • Mishra BS, Singh M, Aggrawal P, Laxmi A, El-Shemy HA. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PloS one. 2009;4(2):e4502. doi:10.1371/journal.pone.0004502.
  • Xiong Y, Sheen J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. The Journal of Biological Chemistry. 2012;287(4):2836–2842. doi:10.1074/jbc.M111.300749.
  • Raya-González J, López-Bucio JS, Prado-Rodríguez JC, Ruiz-Herrera LF, Á A G-G, López-Bucio J. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. Plant Molecular Biology. 2017;95(1–2):141–156. doi:10.1007/s11103-017-0647-z.
  • Xuan W, De Gernier H, Beeckman T. The dynamic nature and regulation of the root clock. development. (Cambridge, England). 2020. p. 147 (3. doi:10.1242/dev.181446.
  • Duan X, Xu S, Xie Y, Li L, Qi W, Parizot B, Zhang Y, Chen T, Han Y, Van Breusegem F, et al. Periodic root branching is influenced by light through an HY1-HY5-auxin pathway. Curr Biol: CB. 2021;31(17):3834–3847.e3835. doi:10.1016/j.cub.2021.06.055.
  • Ditengou FA, Teale WD, Kochersperger P, Flittner KA, Kneuper I, van der Graaff E, Nziengui H, Pinosa F, Li X, Nitschke R, et al. Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2008;105(48):18818–18823. doi:10.1073/pnas.0807814105.
  • Laskowski M, Grieneisen VA, Hofhuis H, Hove CA, Hogeweg P, Marée AF, Scheres B, Weigel D. Root system architecture from coupling cell shape to auxin transport. PLoS Biol. 2008;6(12):e307. doi:10.1371/journal.pbio.0060307.
  • Lucas M, Godin C, Jay-Allemand C, Laplaze L. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot. 2008;59(1):55–66. doi:10.1093/jxb/erm171.
  • Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci U S A. 2003;100(5):2987–2991. doi:10.1073/pnas.0437936100.
  • Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol. 2005;7(11):1057–1065. doi:10.1038/ncb1316.
  • Bailey PH, Currey JD, Fitter AH. The role of root system architecture and root hairs in promoting anchorage against uprooting forces in allium cepa and root mutants of Arabidopsis thaliana. J Exp Bot. 2002;53(367):333–340. doi:10.1093/jexbot/53.367.333.
  • Coates JC, Laplaze L, Haseloff J. Armadillo-related proteins promote lateral root development in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103(5):1621–1626. doi:10.1073/pnas.0507575103.
  • Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. Planta. 2015;241(3):591–602. doi:10.1007/s00425-014-2204-1.
  • Liu C, Wu Q, Liu W, Gu Z, Wang W, Xu P, Ma H, Ge X. Poly(ADP-ribose) polymerases regulate cell division and development in Arabidopsis roots. Journal of Integrative Plant Biology. 2017;59(7):459–474. doi:10.1111/jipb.12530.
  • Malamy J. Intrinsic and environmental factors regulating root system growth. Plant Cell & Env. 2005;28(1):67–77. doi:10.1111/j.1365-3040.2005.01306.x.
  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. Cellular organisation of the Arabidopsis thaliana root. development (Cambridge. England). 1993;119:71–84.
  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ. Dissecting Arabidopsis lateral root development. Trends Plant Sci. 2003;8(4):165–171. doi:10.1016/s1360-1385(03)00051-7.
  • Ben S, Philip B, Liam D. Root development. The Arabidopsis Book. 2002;1. doi:10.1199/tab.0101.
  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci. 2007;12(3):98–105. doi:10.1016/j.tplants.2007.01.004.
  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology. 2003;6(3):280–287. doi:10.1016/s1369-5266(03)00035-9.
  • Chen B, Deng S, Ge T, Ye M, Yu J, Lin S, Ma W, Songyang Z. Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in. Protein & Cell. 2020;11(9):641–660. doi:10.1007/s13238-020-00706-w.
  • Bartocci E, Lió P, Kwiatkowska MZ. Computational modeling, formal analysis, and tools for systems biology. PLoS Computational Biology. 2016;12(1):e1004591. doi:10.1371/journal.pcbi.1004591.
  • Sklavenitis-Pistofidis R, Getz G, Ghobrial I. Single-cell RNA sequencing: one step closer to the clinic. Nature Medicine. 2021;27(3):375–376. doi:10.1038/s41591-021-01276-y.
  • Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative analysis of single-cell RNA sequencing methods. Molecular Cell. 2017;65(4):631–643.e634. doi:10.1016/j.molcel.2017.01.023.
  • Wang X, Ye L, Lyu M, Ursache R, Löytynoja A, Mähönen AP. An inducible genome editing system for plants. Nature Plants. 2020;6(7):766–772. doi:10.1038/s41477-020-0695-2.