1,440
Views
7
CrossRef citations to date
0
Altmetric
Article

Genome-wide identification and expression analysis of the CBF transcription factor family in Lolium perenne under abiotic stress

, , , &
Article: 2086733 | Received 04 May 2022, Accepted 02 Jun 2022, Published online: 17 Jun 2022

References

  • Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci. 2018;S1360138518300864:1–5. doi:10.1016/j.tplants.2018.04.002.
  • Jurczyk B, Rapacz M, Budzisz K, Barcik W, Sasal M. The effects of cold, light and time of day during low-temperature shift on the expression of CBF6, FpCor14b and LOS2 in Festuca pratensis. Plant Science. 2012;183:143–12. doi:10.1016/j.plantsci.2011.08.004.
  • Stockinger JE, Gilmour JS, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America. 1997;94:1035–1040. http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC19635&blobtype=pdf
  • Xin Zhang SGF, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Michael F, Thomashow MF. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant arabidopsis. The Plant J. 2004;39:905–919.
  • Ito Y, Katsura K, Maruyama K, Taji T, Yamaguchi-Shinozaki K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 2006;47(1):141–153. doi:10.1093/pcp/pci230.
  • Artlip TS, Wisniewski ME, Norelli JL. Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness, dormancy, and growth. Environ Exp Bot. 2014;106:79–86. doi:10.1016/j.envexpbot.2013.12.008.
  • Wang Z, Liu J, Guo H, He X, Wu W, Du J, Zhang Z, An X. Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis. Plant Physiology andBiochemistry. 2014;83:107–116. doi:10.1016/j.plaphy.2014.07.012.
  • Du Z, Li J. Expression, purification and molecular characterization of a novel transcription factor KcCBF3 from kandelia candel. Protein Expr Purif. 2019;153:26–34. doi:10.1016/j.pep.2018.08.006.
  • Akhtar M, Jaiswal A, Jaiswal JP, Qureshi MI, Tufchi M, Singh NK. Cloning and characterization of cold, salt and drought inducible C-repeat binding factor gene from a highly cold adapted ecotype of Lepidium latifolium L. Physiol Mol Biol Plants. 2013;19(2):221–230. doi:10.1007/s12298-012-0154-2.
  • Li L, Bo Z, Yin XR, Xu CJ, Chen KS, Chen K-S. Differential expression of the CBF gene family during postharvest cold storage and subsequent shelf-life of peach fruit. Plant Molecular Biology Reporter. 2013;31(6):1358–1367. doi:10.1007/s11105-013-0600-5.
  • Sunchung P, Chin-Mei L, Colleen J, Doherty, Sarah J, Kim Y, Thomashow MF. Gilmour: regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. The Plant J. 2015;82(2):193–207. doi:10.1111/tpj.12796.
  • Yuxin Jia YD, Ding Y, Shi Y, Zhang X, Gong Z, Yang S. The cbfs triple mutants reveal the essential functions ofCBF sin cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016;212(2):345–353. doi:10.1111/nph.14088.
  • Zhou M, Chen H, Wei D, Ma H, Lin J. Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature. Sci Rep. 2017;7(1):39819. doi:10.1038/srep39819.
  • Thomashow MF. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 2010;154(2):571–577. doi:10.1104/pp.110.161794.
  • Peng PH, Lin CH, Tsai HW, Lin TY. Cold response in phalaenopsis aphrodite and characterization of PaCBF1 and PaICE1. Plant Cell Physiol. 2014;55(9):1623. doi:10.1093/pcp/pcu093.
  • Lee S-C, Lim M-H, Yu J-G, Park B-S, Yang T-J. Biochemistry. Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa. Plant Physiology and Biochemistry. 2012;61:142–152. doi:10.1016/j.plaphy.2012.09.016.
  • Barrero-Gil J, Huertas R, Rambla JL, Granell A, Jjpc S. Environment. Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant Cell Environ. 2016;39(10):2303–2318. doi:10.1111/pce.12799.
  • Zarka DG, Vogel JT, Cmfjpp T, Thomashow MF. Cold Induction of arabidopsis CBF genes involves multiple ICE (Inducer of CBF Expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol. 2003;133(2):910–918. doi:10.1104/pp.103.027169.
  • J S G, M A S, P M S, D J E, F M T. Overexpression of the arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000;124(4):1854–1865. doi:10.1104/pp.124.4.1854.
  • Xiong Y, Fei SZ. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta. 2006;224(4):878–888. doi:10.1007/s00425-006-0273-5.
  • Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S. A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J. 2015;84(4):816–826. doi:10.1111/tpj.13037.
  • Tamura K, Yamada T. A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theor Appl Genet. 2007;114(2):273–283. doi:10.1007/s00122-006-0430-z.
  • Hu Z, Ban Q, Hao J, Zhu X, Cheng Y, Mao J, Lin M, Xia E, Li Y. Genome-wide characterization of the C-repeat binding factor (CBF) gene family involved in the response to abiotic stresses in tea plant (Camellia sinensis). Front Plant Sci. 2020;11:921. doi:10.3389/fpls.2020.00921.
  • Cao Y, Wang J, Guo L, Xiao K. Identification, characterization and expression analysis of transcription factor (CBF) genes in rice (Oryza sativa L.). Fronters of Agriculture in China. 2008;2(3):253–261. doi:10.1007/s11703-008-0052-0.
  • Badawi M, Da Nyluk J, Boucho B, Houde M, Sarhan F. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Molecular Genetics & Genomics. 2007;277(5):533–554. doi:10.1007/s00438-006-0206-9.
  • Campoli C, Matus-Cádiz M, Pozniak CJ, Cattivelli L, Fowler DB. Comparative expression of Cbf genes in the triticeae under different acclimation induction temperatures. Molecular Genetics & Genomics. 2009;282(2):141–152. doi:10.1007/s00438-009-0451-9.
  • Francia E, Morcia C, Pasquariello M, Mazzamurro V, Milc JA, Rizza F, Terzi V, Pecchioni N. Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Molecular Biology. 2016;92(1–2):1–15. doi:10.1007/s11103-016-0505-4.
  • Shao HB, Wang HY, Tang XL. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci. 2015;6:902. doi:10.3389/fpls.2015.00902.
  • Zhao X, Zhan L-P, Zou X-Z. Improvement of cold tolerance of the half-high bush Northland blueberry by transformation with the LEA gene from Tamarix androssowii. Plant Growth Regul. 2011;63(1):13–22. doi:10.1007/s10725-010-9507-4.
  • Jung W, Jung Y, Seo W. Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies. Gene. 2018;684:82–94. doi:10.1016/j.gene.2018.10.055.
  • Mohseni S, Che H, Djillali Z, Dumont E, Nankeu J, Danyluk J. Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence. Genome. 2012;55(12):865–881. doi:10.1139/gen-2012-0112.
  • Ma LF, Zhang JM, Huang GQ, Li Y, Li XB, Zheng Y. Molecular characterization of cotton C-repeat/dehydration-responsive element binding factor genes that are involved in response to cold stress. Mol Biol Rep. 2014;41(7):4369–4379. doi:10.1007/s11033-014-3308-1.
  • Choi DW, Close R, Close TJ. Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol. 2002;129(4):1781–1787. doi:10.1104/pp.003046.
  • Kim Y, Hwang I, Jung HJ, Park JI, Kang JG, Nou IS. Genome-wide classification and abiotic stress-responsive expression profiling of carotenoid oxygenase genes in brassica rapa and brassica oleracea. J Plant Growth Regul. 2016;35(1):202–214. doi:10.1007/s00344-015-9520-y.
  • Karanja BK, Xu L, Wang Y, Tang M, M’mbone Muleke E, Dong J, Liu L. Genome-wide characterization of the AP2/ERF gene family in radish (Raphanus sativus L.): unveiling evolution and patterns in response to abiotic stresses. Gene. 2019;718:144048. doi:10.1016/j.gene.2019.144048.
  • Marozsán-Tóth Z, Vashegyi I, Galiba G, Physiology Btjjo P. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms. Journal of Plant Physiol. 2015;181:42–49. doi:10.1016/j.jplph.2015.04.002.
  • Fnjmj S. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the United States of America. 2007;104( 52):21002–21007. http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2409256&blobtype=pdf
  • Peng YL, Wang YS, Fei J, Sun C. Isolation and expression analysis of two novel C-repeat binding factor (CBF) genes involved in plant growth and abiotic stress response in mangrove Kandelia obovata. Ecotoxicology. 2020;29(5–6):718–725. doi:10.1007/s10646-020-02219-y.
  • Han Z, Ssjmg B. Genomics. Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.). Molecular Genetics Genomics. 2008;279(6):585–594. doi:10.1007/s00438-008-0335-4.
  • Zhang X, Fowler SG, Cheng H, Lou Y, Thomashow MF, Stockinger EJ, Thomashow MF. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 2010;39:905–919.
  • Maurya NK, Goswami AK, Singh SK, Prakash J, Kumari A, Chinnusamy V, Talukdar A, Pradhan S, Kumari A. Studies on expression of CBF1 and CBF2 genes and anti-oxidant enzyme activities in papaya genotypes exposed to low temperature stress. Sci Hortic (Amsterdam). 2019;261:108914. doi:10.1016/j.scienta.2019.108914.
  • Wang ZH, Tian G, Qin WJ, Qin W, Turdi M. SCI TJEJH. Characterization of CBF1, CBF2, CBF3, and CBF4 genes of Malus sieversii and analysis of their expression in different habitats. Eur J Hortic Sci. 2017;82(2):81–89. doi:10.17660/eJHS.2017/82.2.3.
  • Zhao C, Zhang Z, Xie S, Si T, Li Y, Jkjpp Z. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in arabidopsis. Plant Physiol. 2016;171(4):2744–2759. doi:10.1104/pp.16.00533.
  • Jiang F, Feng W, Zhen W, Ying L, Shi G, Hu J, Hou X. Components of the arabidopsis CBF cold-response pathway are conserved in non-heading Chinese cabbage. Plant Molecular Biology Reporter. 2011;29(3):525–532. doi:10.1007/s11105-010-0256-3.
  • Byun MY, Lee C, Kang LH, Park TK, Kim SCIWJP, Park H, Lee H, Kim WT. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Sci. 2015;236:61–74. doi:10.1016/j.plantsci.2015.03.020.
  • Li D, Zhang Y, Hu X, Shen X, Lei M, Su Z, Wang T, Jjbpb D. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol. 2011;11(1):109. doi:10.1186/1471-2229-11-109.
  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol. 2004;135(3):1710–1717. doi:10.1104/pp.104.043562.
  • Rubio S, Noriega X, Pérez FJ. Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds. Ann Bot. 2019;123(4):681–689. doi:10.1093/aob/mcy201.
  • Peng YL, Wang YS, Fei J, Cheng H, Ccje S. Isolation and expression analysis of a CBF transcriptional factor gene from the mangrove Bruguiera gymnorrhiza. Ecotoxicology. 29, no. 6 (2020 5):726–735. doi:10.1007/s10646-020-02215-2.
  • Ding Y, Hui L, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in arabidopsis. Dev Cell. 2015;32(3):278–289. doi:10.1016/j.devcel.2014.12.023.
  • Zhu W, Shi K, Tang R, Mu X, Cai J, Chen M, You X, Yang Q. Isolation and functional characterization of the SpCBF1 gene from Solanum pinnatisectum. Physiology and Molecular Biology of Plants. 2018;24(4):605–616. doi:10.1007/s12298-018-0536-1.
  • Guo Y, Xiong L, Ishitani M. An arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proceedings of the National Academy of Sciences of the United States of America. 2002;99( 11):7786. https://www.pnas.org/doi/full/10.1073/pnas.112040099
  • Benedict C, Skinner JS, Meng R, Chang Y, Hurry V, Huner NPA, Finn CE, CHEN THH, HURRY V. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in populus spp. Plant Cell Environ. 2010;29(7):1259–1272. doi:10.1111/j.1365-3040.2006.01505.x.
  • Siddiqua M, Nassuth A. Vitis CBF1 and Vitis CBF4 differ in their effect on arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ. 2011;34(8):1345–1359. doi:10.1111/j.1365-3040.2011.02334.x.
  • Ali N, Hadi F. CBF/DREB transcription factor genes play role in cadmium tolerance and phytoaccumulation in Ricinus communis under molybdenum treatments. Chemosphere. 2018;208:425–432. doi:10.1016/j.chemosphere.2018.05.165.
  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Yamaguchi Hinozaki K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K. Soybean DREB1/CBF‐type transcription factors function in heat and drought as well as cold stress‐responsive gene expression. Plant J. 2014;81(3):505–518. doi:10.1111/tpj.12746.
  • Thomashow FMF, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002;14(8):1675–1690. doi:10.1105/tpc.003483.
  • Novillo F, Medina J, Rodríguez-Franco M, Neuhaus G, Salinas J. Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. J Exp Bot. 2012;63(1):293–304. doi:10.1093/jxb/err279.
  • An X-FW J-P, Zhang X-W, You C-X, Hao Y-J, Hao Y-J. Apple B‐box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ‐BBX37‐ICE1‐CBF pathway and undergoes MIEL1‐mediated ubiquitination and degradation. New Phytol. 2021;229(5):2707–2729. doi:10.1111/nph.17050.
  • Liu Y, Dang P, Liu L, He C. Cold acclimation by theCBF– COR pathway in a changing climate: lessons from arabidopsis thaliana. Plant Cell Rep. 2019;38(5):511–519. doi:10.1007/s00299-019-02376-3.
  • Lee HG, Seo PJ. The MYB 96– HHP module integrates cold and abscisic acid signaling to activate the CBF – COR pathway in Arabidopsis. The Plant J. 2015;82(6):962–977. doi:10.1111/tpj.12866.
  • Yin S, Han Y, Huang L, Hong Y, Zhang G. Overexpression of HvCBF7 and HvCBF9 changes salt and drought tolerance in Arabidopsis. Plant Growth Regul. 2018;85(2):281–292. doi:10.1007/s10725-018-0394-4.
  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta. 2011;233(5):971–983. doi:10.1007/s00425-011-1358-3.
  • Dou H, Xv K, Meng Q, LI G, Yang X. Potato plants ectopically expressing A rabidopsis thaliana CBF 3 exhibit enhanced tolerance to high-temperature stress. Plant, Cell & Environment. 2015;38(1):61–72. doi:10.1111/pce.12366.