2,131
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Tolerance and adaptation characteristics of sugar beet (Beta vulgaris L.) to low nitrogen supply

ORCID Icon, , , , , , , & ORCID Icon show all
Article: 2159155 | Received 24 Oct 2022, Accepted 03 Dec 2022, Published online: 25 Dec 2022

References

  • Li Z, Li GL, Sun YQ, Su WB, Fan FY, Zhang SY. Effects of water and nitrogen supply on nitrogen assimilation and utilization of sugar beet (Beta vulgaris) with drip irrigation under plastic mulch. Plant Physiol 2019:6. doi:10.13592/j.cnki.ppj.2019.1004.
  • Solomon S, Li Y-R. The sugar industry of Asian region. Sugar Tech 2016;18(6): 557–12. doi:10.1007/s12355-016-0500-8.
  • FAO, 2010. Handbook Agribusiness: Sugar Beet White Sugar. Agribusiness.
  • Mubarak MU, Zahir M, Ahmad S, Wakeel A. Sugar beet yield and industrial sugar contents improved by potassium fertilization under scarce and adequate moisture conditions. J. Integr. Agric. 2016;15(11):2620–2626. doi:10.1016/S2095-3119(15)61252-7.
  • Ernst D, Cerny I, Pacuta V, Skopal J, Vician T, Zapletalova A, Rasovsky M, Gazo J, Sulik R. Yield and sugar content of sugar beet depending on different soil tillage technologies. Listy Cukrovarnicke a Reparske. 2021;137:319–324.
  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P. Chapter 6 - functions of macronutrients. In: Marschner P, editor. Marschner’s mineral nutrition of higher plants (third edition). San Diego of California: Academic Press; 2012. p. 135–189. doi:10.1016/B978-0-12-384905-2.00006-6.
  • Zhang F, Wang L, Bai P, Wei K, Zhang Y, Ruan L, Wu L, Cheng H. Identification of regulatory networks and hub genes controlling nitrogen uptake in tea plants [Camellia sinensis (L.) O. Kuntze]. J Agric Food Chem. 2020;68(8):2445–2456. doi:10.1021/acs.jafc.9b06427.
  • Yang Y, Wang L, Che Z, Wang R, Cui R, Xu H, Chu S, Jiao Y, Zhang H, Yu D, et al. Novel target sites for soybean yield enhancement by photosynthesis. J Plant Physiol. 2022;268:153580. doi:10.1016/j.jplph.2021.153580.
  • Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2021;158:76–82. doi:10.1016/j.plaphy.2020.11.019.
  • Leghari SJ, Wahocho NA, Laghari GM, HafeezLaghari A, MustafaBhabhan G, HussainTalpur K, Bhutto TA, Wahocho SA, Lashari AA. Role of nitrogen for plant growth and development: a review. Adv Enviro . Biol 2016;10:209–219.
  • Hergert GW. Sugar beet fertilization. Sugar Tech. 2010;12(3):256–266. doi:10.1007/s12355-010-0037-1.
  • Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I, Schmitz C, Müller C, Bonsch M, Humpenöder F. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat Commun. 2014;5:3858. doi:10.1038/ncomms4858.
  • Qin L, Walk TC, Han P, Chen L, Zhang S, Li Y, Hu X, Xie L, Yang Y, Liu J, et al. Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiol. 2019;179(1):329–347. doi:10.1104/pp.18.00716.
  • York LM, Galindo-Castañeda T, Schussler JR, Lynch JP. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot. 2015;66(8):2347–2358. doi:10.1093/jxb/erv074.
  • Westermann DT. Nutritional requirements of potatoes. Am J Potato Res. 2005;82(4):301–307. doi:10.1007/BF02871960.
  • Subudhi PK, Garcia RS, Coronejo S, Tapia R. Comparative transcriptomics of rice genotypes with contrasting responses to nitrogen stress reveals genes influencing nitrogen uptake through the regulation of root architecture. Int J Mol Sci. 2020;21(16):5759. doi:10.3390/ijms21165759.
  • Eissenstat DM. Trade-offs in root form and function. Ecology in Agriculture. San DiegoAcademic Press;1997. p. 173–199.
  • Trubat R, Cortina J, Vilagrosa A. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings. Oecologia. 2012;170(4):899–908. doi:10.1007/s00442-012-2380-2.
  • Liu X, Wang S, Deng X, Zhang Z, Yin L. Comprehensive evaluation of physiological traits under nitrogen stress and participation of linolenic acid in nitrogen-deficiency response in wheat seedlings. BMC Plant Biol. 2020;20(1):1–16. doi:10.1186/s12870-020-02717-5.
  • Lichtenthaler HK. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Plant Cell Membranes. 1987; 350–382. doi:10.1016/0076-6879(87)48036-1.
  • Distéfano AM, López GA, Bauer V, Zabaleta E, Pagnussat GC. Ferroptosis in plants: regulation of lipid peroxidation and redox status. Biochem. J. 2022;479(7):857–866. doi:10.1042/bcj20210682.
  • Nadeem F, Mahmood R, Sabir M, Haider MS, Li X, Li X, Li X, Li X, Li X. Foxtail millet [Setaria italica (L.) Beauv.] over-accumulates ammonium under low nitrogen supply. Plant Physiol. Biochem. 2022;185(15):35–44. doi:10.1016/j.plaphy.2022.05.031.
  • Zhu R, Yuan Q, Du G, Deng G, Yang Y, Muzammal R, Liu F. Morpho-physiological traits, antioxidant capacity and nutrient accumulation in hemp (Cannabis sativa L.) under varying levels of nitrogen nutrition. J Plant Nutr. 2022;45(6):854–865. doi:10.1080/01904167.2021.1994596.
  • Wang XK, Huang JL. Principle and technology of plant physiological and biochemical experiment. China: Higher Education Press; 2015.
  • Wang CZ, Li JH, Guo YX, Fang LY, Gao YG. Effect of photoperiod on SOD and POD activities in alfalfa varieties with different fall dormancy. Acta Agrestia Sinica. 2007;05:407–411. doi:10.11733/j.1007-0435.2007.05.002.
  • Wu H, Zhang JS, Shi JY, Fan ZC, Aliyan RZ, Zhang P, Zheng S. Physiological responses of cotton seedlings under low temperature stress. Acta Botanica Boreali-Occidentalia Sinica. 2013;33:74–82.
  • Xiong ZQ, Tu XR, Wei SJ, Huang L, Li XH, Lu H, Tu GQ. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from Streptomyces padanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani. PLoS One, 2013. 8(8): e73884. 10.1371/journal.pone.0073884.
  • Cao X, Jiang F, Wang X, Zang Y, Wu Z. Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica. 2015;205(2):569–584. doi:10.1007/s10681-015-1433-0.
  • Liu C, Gong X, Wang H, Dang K, Deng X, Feng B. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiol. Biochem. 2020;151:233–242. doi:10.1016/j.plaphy.2020.03.027.
  • Hadir S, Gaiser T, Hüging H, Athmann M, Pfarr D, Kemper R, Ewert F, Seidel S. Sugar beet shoot and root phenotypic plasticity to nitrogen, phosphorus, potassium and lime omission. Agriculture. 2020;11(1):21. doi:10.3390/agriculture11010021.
  • Shi Z, Wei F, Wan R, Li Y, Wang Y, An W, Qin K, Dai G, Cao Y, Chen X, et al. Comprehensive evaluation of nitrogen use efficiency of different Lycium barbarum L. cultivars under nitrogen stress. Sci Hortic (Amsterdam). 2022;295:110807. doi:10.1016/j.scienta.2021.110807.
  • Bin X, Xiuhong A, Yanhui C, Zhigang C, Deying Z, Guodong K, Haitao Z, Zhuang L, Yanzhen Z, An Y, et al. Response and tolerance of apple rootstocks to low nitrogen stress. J Plant Nutr Fert. 2022;28(6):1092–1103. doi:10.11674/zwyf.2021546.
  • Qi J, Zhiwei C, Chenghong L, Ting H, Guimei G, Runhong G, Hongwei X, Yingbo L, Ruiju L, Jianhua H. Screening and identification indices of Low-nitrogen tolerance for barley landraces at seedling stage. Acta Agric.Boreali-Sinica. 2019;34(1):148–155. doi:10.7668/hbnxb.201751103.
  • Cai H, Lu Y, Xie W, Zhu T, Lian X. Transcriptome response to nitrogen starvation in rice. J Biosci. 2012;37(4):731–747. doi:10.1007/s12038-012-9242-2.
  • Zhang Y, Chen C, Jin Z, Yang Z, Li Y. Leaf anatomy, photosynthesis, and chloroplast ultrastructure of Heptacodium miconioides seedlings reveal adaptation to light environment. Environ Exp Bot. 2022;195:104780. doi:10.1016/j.envexpbot.2022.104780.
  • Warren CR, Adams MA, Chen Z. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants? Funct Plant Biol. 2000;27(5):407–416. doi:10.1071/PP98162.
  • Stitt M, Schulze D. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ. 1994;17(5):465–487. doi:10.1111/j.1365-3040.1994.tb00144.x.
  • Luo J, Zhou JJ, Masclaux-Daubresse C, Wang N, Wang H, Zheng B. Morphological and physiological responses to contrasting nitrogen regimes in Populus cathayana is linked to resources allocation and carbon/nitrogen partition. Environ Exp Bot. 2019;162:247–255. doi:10.1016/j.envexpbot.2019.03.003.
  • Acharya BR, Sandhu D, Dueñas C, Dueñas M, Pudussery M, Kaundal A, Ferreira JF, Suarez DL, Skaggs TH. Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Sci Rep. 2022;12(1):1274. doi:10.1038/s41598-022-05202-1.
  • Zhang C, Zhang Y, Lu Z, Liu L. Screening Fagopyrum tararicum genotypes tolerant to Low nitrogen stress at seedling stage and its evaluating indices. Acta Agron Sin. 2017;43(8):1205–1215. doi:10.3724/SP.J.1006.2017.01205.
  • Wei Z, Xu Q, Za S, Wang Y, Yuan H, Zeng X, Tashi N. The effects of nitrogen deficiency on the growth and physiological characteristics of hulless barley seedlings. J. Cereal Sci. 2017;34(2):1–9. doi:10.14069/j.cnki.32-1769/s.2017.02.001.
  • Yañez-Mansilla E, Cartes P, Reyes-Díaz M, Ribera-Fonseca A, Rengel Z, Alberdi M. Leaf nitrogen thresholds ensuring high antioxidant features of Vaccinium corymbosum cultivars. J Soil Sci Plant Nutr. 2015;15(3):574–586. doi:10.4067/S0718-95162015005000025.
  • Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants. American: John wiley & sons; 2015.
  • Mrid RB, El Omari R, El Mourabit N, Bouargalne Y, Nhiri M. Changes in the antioxidant and glyoxalase enzyme activities in leaves of two Moroccan sorghum ecotypes with differential tolerance to nitrogen stress. Aust. J. Crop Sci 2018;12(8):1280–1287. doi:10.21475/ajcs.18.12.08.PNE1008.
  • Hosseinifard M, Stefaniak S, Ghorbani Javid M, Soltani E, Wojtyla Ł, Garnczarska M. Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. Int J Mol Sci. 2022;23(9):5186. doi:10.3390/ijms23095186.
  • Chen S, Qiu G . Overexpression of the intertidal seagrass J protein ZjDjB1 enhances tolerance to chilling injury. Plant Biotechnol Rep. 2022;16:419–435. doi:10.1007/s11816-022-00761-1.