2,277
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Identification and expression analysis of YABBY family genes in Platycodon grandiflorus

, , , , , , , , & ORCID Icon show all
Article: 2163069 | Received 09 Nov 2022, Accepted 22 Dec 2022, Published online: 22 Jan 2023

References

  • Nguyen NH, Ha TKQ, Yang JL, Pham HTT, Oh WK. Triterpenoids from the genus Gynostemma: chemistry and pharmacological activities. J Ethnopharmacol. 2021;268:113574. doi:10.1016/j.jep.2020.113574.
  • Zhang L, Wang Y, Yang D, Zhang C, Zhang N, Li M, et al. Platycodon grandiflorus - an ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol. 2015;164:147–12. doi:10.1016/j.jep.2015.01.052.
  • Ma CH, Gao ZJ, Zhang JJ, Zhang W, Shao JH, Hai MR, Chen J-W, Yang S-C, Zhang G-H. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis. Front Plant Sci. 2016;7:673. doi:10.3389/fpls.2016.00673.
  • Shin KC, Kim DW, Woo HS, Oh DK, Kim YS. Conversion of glycosylated platycoside E to deapiose-xylosylated platycodin D by cytolase PCL5. Int J Mol Sci. 2020;21:1207. doi:10.3390/ijms21041207.
  • Bowman JL, Smyth DR. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development. 1999;126:2387–2396. doi:10.1242/dev.126.11.2387.
  • Romanova MA, Maksimova AI, Pawlowski K, Voitsekhovskaja OV. YABBY genes in the development and evolution of land plants. Int J Mol Sci. 2021;22(8):4139. doi:10.3390/ijms22084139.
  • Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell. 2010;22:2113–2130. doi:10.1105/tpc.110.075853.
  • Gross T, Broholm S, Becker A. CRABS CLAW acts as a bifunctional transcription factor in flower development. Front Plant Sci. 2018;9:835. doi:10.3389/fpls.2018.00835.
  • Bowman JL. The YABBY gene family and abaxial cell fate.pdf. Curr Opin Plant Biol. 2000;3:17–22. doi:10.1016/s1369-5266(99)00035-7.
  • Bartholmes C, Hidalgo O, Gleissberg S. Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae). Plant Biol (Stuttg). 2012;14:11–23. doi:10.1111/j.1438-8677.2011.00486.x.
  • Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genomics. 2013;288:111–129. doi:10.1007/s00438-013-0733-0.
  • Sawa S, Ito T, Shimura Y, Okada K, Sawa S, Ito T, Shimura Y, Okada K. FILAMENTOUS FLOWER Controls the Formation and .pdf. Plant Cell. 1999;(11):69–86. doi:10.1105/tpc.11.1.69.
  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development. 1999;126:4117–4128. doi:10.1242/dev.126.18.4117.
  • Stahle MI, Kuehlich J, Staron L, von Arnim AG, Golz JF. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis the plant cell. Plant Cell. 2009;21:3105–3118. doi:10.1105/tpc.109.070458.
  • Villanueva JM, Broadhvest J, Hauser BA, Meiste RJ, Schneitz K, Gasser CS. INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes Dev. 1999;13:3160–3169. doi:10.1101/gad.13.23.3160.
  • Du H, Ran JH, Feng YY, Wang XQ. The flattened and needle like leaves of the pine family (Pinaceae) share a conserved genetic network for adaxial-abaxial polarity but have diverged for photosynthetic adaptation. BMC Evol Biol. 2020;20:131. doi:10.1186/s12862-020-01694-5.
  • Yamada T, Yokota S, Hirayama Y, Imaichi R, Kato M, Gasser CS. Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. Plant J. 2011;67:26–36. doi:10.1111/j.1365-313X.2011.04570.x.
  • Lee JY, Baum SF, Alvarez J, Patel A, Chitwood DH, Bowman JL. Activation of CRABS CLAW in the Nectaries and Carpels of Arabidopsis. Plant Cell. 2005;17:25–36. doi:10.1105/tpc.104.026666.
  • Lee JY, Baum SF, Oh SH, Jiang CZ, Chen JC, Bowman JL. Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development. 2005;132:5021–5032. doi:10.1242/dev.02067.
  • Yamada T, Ito M, Kato M. YABBY2‐homologue expression in lateral organs of amborella trichopoda (Amborellaceae).pdf. International Journal of Plant Sciences. 2004;165:917–924. doi:10.1086/423793.
  • Yang C, Ma Y, Li J. The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway. J Exp Bot. 2016;67:5545–5556. doi:10.1093/jxb/erw319.
  • Juarez MT, Twigg RW, Timmermans MC. Specification of adaxial cell fate during maize leaf development. Development. 2004;131:4533–4544. doi:10.1242/dev.01328.
  • Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H-Y. Temporal and spatial regulation ofDROOPING LEAFgene expression that promotes midrib formation in rice. The Plant Journal. 2011;65:77–86. doi:10.1111/j.1365-313X.2010.04404.x.
  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell. 2004;16:500–509. doi:10.1105/tpc.018044.
  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development. 2003;130:705–718. doi:10.1242/dev.00294.
  • Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury PJ, Buckler ES, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell. 2017;29:1622–1641. doi:10.1105/tpc.16.00477.
  • Simon MK, Skinner DJ, Gallagher TL, Gasser CS. Integument development in Arabidopsis depends on interaction of YABBY protein INNER NO OUTER with coactivators and corepressors. Genetics. 2017;207:1489–1500. doi:10.1534/genetics.117.300140.
  • Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano H-Y. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genomics. 2007;277:457–468. doi:10.1007/s00438-006-0202-0.
  • Li Z, Li G, Cai M, Priyadarshani S, Aslam M, Zhou Q, Huang X, Wang X, Liu Y, Qin Y, et al. Genome-wide analysis of the YABBY transcription factor family in pineapple and functional identification of AcYABBY4 involvement in salt stress. Int J Mol Sci. 2019;20:5863. doi:10.3390/ijms20235863.
  • Inal B, Buyuk I, Ilhan E, Aras S. Genome-wide analysis of Phaseolus vulgaris C2C2-YABBY transcription factors under salt stress conditions. Biotech. 2017;7(5):302. doi:10.1007/s13205-017-0933-0.
  • Zhao SP, Lu D, Yu TF, Ji YJ, Zheng WJ, Zhang SX, Chai S-C, Chen Z-Y, Cui X-Y. Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses. Plant Physiol Biochem. 2017;119:132–146. doi:10.1016/j.plaphy.2017.08.026.
  • Zheng P, Fan W, Wang S, Hao P, Wang Y, Wan H, Hao Z, Liu J, Zhao X. Characterization of polysaccharides extracted from Platycodon grandiflorus (Jacq.) A.DC. affecting activation of chicken peritoneal macrophages. Int J Biol Macromol. 2017;96:775–785. doi:10.1016/j.ijbiomac.2016.12.077.
  • Hüttner AVPDMCXB S, Thi Kim Anh D, Vu Nguyen Thanh D, Eijsink VGH, Larsbrink J, Olssona L, Eijsink VGH, Larsbrink J, Olsson L. Specific xylan activity revealed for AA9 lytic polysaccharide monooxygenases of the thermophilic fungus malbranchea cinnamomea by functional characterization. Applied and Environmental Microbiology. 2019. doi:10.1128/AEM.
  • Khachane AN, Timmis KN, Dos Santos VA. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res. 2005;33:4016–4022. doi:10.1093/nar/gki714.
  • Tamura K, Stecher G, Kumar S, Battistuzzi FU. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–3027. doi:10.1093/molbev/msab120.
  • Ma R, Huang B, Huang Z, Zhang Z. Genome-wide identification and analysis of the YABBY gene family in moso bamboo phyllostachys edulis Carriere. J. Houz. PeerJ. 2021;9:e11780. doi:10.7717/peerj.11780.
  • Dai M, Hu Y, Zhao Y, Liu H, Zhou DX. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol. 2007;144:380–390. doi:10.1104/pp.107.095737.
  • Yang Z, Gong Q, Wang L, Jin Y, Xi J, Li Z, Qin W, Yang Z, Lu L, Chen Q, et al. Genome-Wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Frontiers in Genetics. 2018;9. doi:10.3389/fgene.2018.00033.
  • Liu X, Liao XY, Zheng Y, Zhu MJ, Yu X, Jiang YT, et al. Genome-Wide identification of the YABBY gene family in seven species of magnoliids and expression analysis in litsea. Plants (Basel). 2020;10. doi:10.3390/plants10010021.
  • Hou H, Lin Y, Hou X. Ectopic expression of a Pak-choi YABBY gene, BcYAB3, causes leaf curvature and flowering stage delay in Arabidopsis thaliana. Genes (Basel). 2020;11:370. doi:10.3390/genes11040370.
  • Fedorov A, Merican AF, Gilbert W. Large-scale comparison of intron positions among animal, plant, and fungal genes.pdf. Proc Natl Acad Sci U S A. 2002;99:25. doi:10.1073/pnas.242624899.
  • Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biology. 2003;13:1512–1517. doi:10.1016/s0960-9822(03)00558-x.
  • Dewey CN, Rogozin IB, Koonin EV. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns. BMC Genomics. 2006;7:311. doi:10.1186/1471-2164-7-311.
  • Gorlova O, Fedorov A, Logothetis C, Amos C, Gorlov I. Genes with a large intronic burden show greater evolutionary conservation on the protein level.pdf>. Gorlova Et Al BMC Evolutionary Biology. 2014;14:50. doi:10.1186/1471-2148-14-50.
  • Biłas R, Szafran K, Hnatuszko-Konka K, Kononowicz AK. Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture (PCTOC). 2016;127:269–287. doi:10.1007/s11240-016-1057-7.
  • Heidari P, Ahmadizadeh M, Izanlo F, Nussbaumer T. In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa: focus on post-translation modifications. Plant Gene. 2019;19:100189. doi:10.1016/j.plgene.2019.100189.
  • Yuan Z, Zhang D. Roles of jasmonate signalling in plant inflorescence and flower development. Curr Opin Plant Biol. 2015;27:44–51. doi:10.1016/j.pbi.2015.05.024.
  • Zhang J, Wu A, Wei H, Hao P, Zhang Q, Tian M, Yang X, Cheng S, Fu X, Ma L, et al. Genome-wide identification and expression patterns analysis of the RPD3/HDA1 gene family in cotton. BMC Genomics. 2020;21:643. doi:10.1186/s12864-020-07069-w.
  • Soundararajan P, Won SY, Park DS, Lee YH, Kim JS. Comparative analysis of the YABBY gene family of bienertia sinuspersici, a single-Cell C4 plant. Plants (Basel). 2019:8. doi:10.3390/plants8120536.
  • Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, et al. The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. Plant Cell. 2012;24:80–95. doi:10.1105/tpc.111.094797.
  • Tanaka W, Toriba T, Hirano HY. Three TOB1-related YABBY genes are required to maintain proper function of the spikelet and branch meristems in rice. New Phytol. 2017;215:825–839. doi:10.1111/nph.14617.
  • Liu HL, Xu YY, Xu ZH, Chong K. A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol. 2007;217:629–637. doi:10.1007/s00427-007-0173-0.
  • Li C, Dong N, Shen L, Lu M, Zhai J, Zhao Y, Chen L, Wan Z, Liu Z, Ren H, et al. Genome-wide identification and expression profile of YABBY genes in Averrhoa carambola. PeerJ. 2022;9:e12558. doi:10.7717/peerj.12558.
  • Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet. 2008;40(6):800–804. doi:10.1038/ng.144.
  • Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Rajan C, Venkatesh PN, Chua N-H, Sarojam R. Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant Biotechnol J. 2016;14:1619–1632. doi:10.1111/pbi.12525.
  • Boter M, Golz JF, Giménez-Ibañez S, Fernandez-Barbero G, Franco-Zorrilla JM, Solano R. FILAMENTOUS FLOWER Is a direct target of JAZ3 and modulates responses to jasmonate.pdf. Plant Cell. 2015;27:3160–3174. doi:10.1105/tpc.15.00220.
  • Kayani SI, Shen Q, Ma Y, Fu X, Xie L, Zhong Y, Tiantian C, Pan Q, Li L, Rahman S-U, et al. The YABBY family transcription factor AaYABBY5 directly targets cytochrome P450 monooxygenase (CYP71AV1) and double-bond reductase 2 (DBR2) involved in artemisinin biosynthesis in Artemisia Annua. Front Plant Sci. 2019;10:1084. doi:10.3389/fpls.2019.01084.