1,213
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Small secreted proteins and exocytosis regulators: do they go along?

ORCID Icon & ORCID Icon
Article: 2163340 | Received 21 Oct 2022, Accepted 23 Dec 2022, Published online: 12 Feb 2023

References

  • Farvardin A, González-Hernández AI, Llorens E, García-Agustín P, Scalschi L, Vicedo B. The Apoplast: a Key Player in Plant Survival. Antioxidants (Basel). 2020;9(7):604. doi:10.3390/antiox9070604.
  • Guerra-Guimarães L, Pinheiro C, Chaves I, Barros DR, Ricardo CP. Protein Dynamics in the Plant Extracellular Space. Proteomes. 2016;4(3):22. doi:10.3390/proteomes4030022.
  • Inada N, Ueda T. Membrane trafficking pathways and their roles in plant-microbe interactions. Plant Cell Physiol. 2014;55(4):672–7. doi:10.1093/pcp/pcu046.
  • Kim SJ, Brandizzi F. The plant secretory pathway: an essential factory for building the plant cell wall. Plant Cell Physiol. 2014;55(4):687–693. doi:10.1093/pcp/pct197.
  • Thiel G, Battey N. Exocytosis in plants. Plant Mol Biol. 1998 PMID: 9738963;38(1–2):111–125. doi:10.1023/A:1006038122009.
  • Martinière A, Moreau P. Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never-ending story. J Microsc. 2020;280(2):140–157. doi:10.1111/jmi.12952.
  • Yamaguchi YL, Ishida T, Sawa S. CLE Peptides and Their Signaling Pathways in Plant Development. Journal of Experimental Botany. 2016;67(16):4813–4826. doi:10.1093/jxb/erw208.
  • Jun JH, Fiume E, Roeder AH, Meng L, Sharma VK, Osmont KS,B, Baker C, Ha CM, Meyerowitz EM, Feldman LJ, et al. Comprehensive Analysis of CLE Polypeptide Signaling Gene Expression and Overexpression Activity in Arabidopsis. Plant Physiol. 2010;154(4):1721–1736. doi:10.1104/pp.110.163683.
  • Song XF, Hou XL, Liu CM. CLE Peptides: critical Regulators for Stem Cell Maintenance in Plants. Planta. 2022;255(1). doi:10.1007/s00425-021-03791-1.
  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science. 2000 Jul 28;289(5479):617–619. doi:10.1126/science.289.5479.617.
  • Gregory EF, Dao TQ, Alexander MA, Miller MJ, Fletcher JC, Candela H. The Signaling Peptide-Encoding Genes CLE16, CLE17 and CLE27 Are Dispensable for Arabidopsis Shoot Apical Meristem Activity. PLoS ONE. 2018;13(8):8. doi:10.1371/journal.pone.0202595.
  • Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Van Eck J, et al. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet. 2019;51(5):786–792. doi:10.1038/s41588-019-0389-8.
  • Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P. Plant CLE Peptides from Two Distinct Functional Classes Synergistically Induce Division of Vascular Cells. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(47):18625–18630. doi:10.1073/pnas.0809395105.
  • Ghorbani S, Hoogewijs K, Pečenková T, Fernandez A, Inzé A, Eeckhout D, Kawa D, De Jaeger G, Beeckman T, Madder A, et al. The SBT6.1 Subtilase Processes the GOLVEN1 Peptide Controlling Cell Elongation. Journal of Experimental Botany. 2016;67(16):4877–4887. doi:10.1093/jxb/erw241.
  • Stührwohldt N, Ehinger A, Thellmann K, Schaller A. Processing and Formation of Bioactive CLE40 Peptide Are Controlled by Posttranslational Proline Hydroxylation. Plant Physiology. 2020;184(3):1573–1584. doi:10.1104/pp.20.00528.
  • Stührwohldt N, Scholl S, Lang L, Katzenberger J, Schumacher K, Schaller A. The Biogenesis of Clel Peptides Involves Several Processing Events in Consecutive Compartments of the Secretory Pathway. ELife. 2020:9. doi:10.7554/eLife.55580.
  • Fukuda H, Hardtke CS. Peptide Signaling Pathways in Vascular Differentiation. Plant Physiol. 2020;182(4):1636–1644. doi:10.1104/pp.19.01259.
  • Breen S, Williams SJ, Outram M, Kobe B, Solomon PS. Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science. 2017;22(10):871–879. doi:10.1016/j.tplants.2017.06.013.
  • Gibbs GM, Roelants K, O’Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins–roles in reproduction, cancer, and immune defense. Endocr Rev. 2008;29(7):865–897. doi:10.1210/er.2008-0032.
  • Agrios GN. How plants defend themselves against pathogens. In: Agrios GN editor. Plant Pathology. Amsterdam: Academic Press; 2005. p. 207–248.
  • Gamir J, Darwiche R, Van’t Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F. The Sterol-Binding Activity of PATHOGENESIS-RELATED PROTEIN 1 Reveals the Mode of Action of an Antimicrobial Protein. Plant Journal. 2017;89(3):502–509. doi:10.1111/tpj.13398.
  • Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG, Chen YR. Quantitative Peptidomics Study Reveals That a Wound-Induced Peptide from PR-1 Regulates Immune Signaling in Tomato. Plant Cell. 2014;26(10):4135–4148. doi:10.1105/tpc.114.131185.
  • Sung YC, Outram MA, Breen S, Wang C, Dagvadorj B, Winterberg B, Kobe B, Williams SJ, Solomon PS. PR1-Mediated Defence via C-Terminal Peptide Release Is Targeted by a Fungal Pathogen Effector. New Phytologist. 2021;229(6):3467–3480. doi:10.1111/nph.17128.
  • Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H. Salicylic Acid and Jasmonic Acid Pathways Are Activated in Spatially Different Domains around the Infection Site during Effector-Triggered Immunity in Arabidopsis Thaliana. Plant and Cell Physiology. 2018;59(1):8–16. doi:10.1093/pcp/pcx181.
  • Lincoln JE, Sanchez JP, Zumstein K, Gilchrist DG. Plant and Animal PR1 Family Members Inhibit Programmed Cell Death and Suppress Bacterial Pathogens in Plant Tissues. Molecular Plant Pathology. 2018;19(9):2111–2123. doi:10.1111/mpp.12685.
  • Pečenková T, Pejchar P, Moravec T, Drs M, Haluška S, Šantrůček J, Potocká A, Žárský V, Potocký M. Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking. Molecular Plant Pathology. 2022 February;23(5):664–678. doi:10.1111/mpp.13187.
  • van Loon LC, Rep M, Pieterse CM. Significance of Inducible Defense-Related Proteins in Infected Plants. Annual Review of Phytopathology. 2006. doi:10.1146/annurev.phyto.44.070505.143425.
  • Baena G, Xia L, Waghmare S, Karnik R. SNARE SYP132 mediates divergent traffic of plasma membrane H+-ATPase AHA1 and antimicrobial PR1 during bacterial pathogenesis. Plant Physiol. 2022;189(3):1639–1661. doi:10.1093/plphys/kiac149.
  • Chung KP, Zeng Y, Li Y, Ji C, Xia Y, Jiang L. Signal motif-dependent ER export of the Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis. J Cell Sci. 2018;131(2):jcs202838. doi:10.1242/jcs.202838.
  • Du Y, Mpina MH, Birch PR, Bouwmeester K, Govers F Phytophthora infestans RXLR Effector AVR1 Interacts with Exocyst Component Sec5 to Manipulate Plant Immunity. Plant Physiol. 2015 Nov;169(3):1975–1990. doi: 10.1104/pp.15.01169.
  • Gu Y, Innes RW. The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell. 2012;24(11):4717–4730. doi:10.1105/tpc.112.105254.
  • Kalde M, Nühse TS, Findlay K, Peck SC. The Syntaxin SYP132 Contributes to Plant Resistance against Bacteria and Secretion of Pathogenesis-Related Protein 1. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(28):11850–11855. doi:10.1073/pnas.0701083104.
  • Wang D, Weaver ND, Kesarwani M, Dong X. Induction of protein secretory pathway is required for systemic acquired resistance. Science. 2005;308(5724):1036–1040. doi:10.1126/science.
  • Pečenková T, Pleskot R, Žárský V. Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein. International Journal of Molecular Sciences. 2017;18(4):825. doi:10.3390/ijms18040825.
  • Laird J, Armengaud P, Giuntini P, Laval V, Milner JJ. Inappropriate annotation of a key defence marker in Arabidopsis: will the real PR-1 please stand up? Planta. 2004;219(6):1089–1092. doi:10.1007/s00425-004-1355-x.
  • Chien PS, Nam HG, Chen YR. A Salt-Regulated Peptide Derived from the CAP Superfamily Protein Negatively Regulates Salt-Stress Tolerance in Arabidopsis. Journal of Experimental Botany. 2015;66(17):5301–5313. doi:10.1093/jxb/erv263.
  • Santamaria M, Thomson CJ, Read ND, Loake GJ. The Promoter of a Basic PR1-like Gene, AtPRB1, from Arabidopsis Establishes an Organ-Specific Expression Pattern and Responsiveness to Ethylene and Methyl Jasmonate. Plant Molecular Biology. 2001;47(5):641–652.
  • Pratelli R, Sutter JU, Blatt MR. A new catch in the SNARE. Trends in Plant Science. 2004;9(4):187–195. doi:10.1016/j.tplants.2004.02.007. PMID: 15063869
  • Vernoud V, Horton AC, Yang Z, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiology. 2003;131(3):1191–1208. doi:10.1104/pp.013052.
  • Žárský V, Sekereš J, Kubátová Z, Pečenková T, Cvrčková F. Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. J Exp Bot. 2020;71(1):49–62. doi:10.1093/jxb/erz423.
  • Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, Bågman AM, Foret J, Abbitt S, Tang M, Li B, et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature. 2018;563(7730):259–264. doi:10.1038/s41586-018-0656-3.
  • Rao X, Chen X, Shen H, Ma Q, Li G, Tang Y, Pena M, York W, Frazier TP, Lenaghan S, et al. Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum). Plant Biotechnol J. 2019;17(3):580–593. doi:10.1111/pbi.13000.
  • Zhou Y, Sukul A, Mishler-Elmore JW, Faik A, Held MA. PlantNexus: a Gene Co-expression Network Database and Visualization Tool for Barley and Sorghum. Plant Cell Physiol. 2022;63(4):565–572. doi:10.1093/pcp/pcac007.
  • Gaudinier A, Brady SM. Mapping Transcriptional Networks in Plants: data-Driven Discovery of Novel Biological Mechanisms.”. Annu Rev Plant Biol. 2016;67(1):575–594. doi:10.1146/annurev-arplant-043015-112205.
  • Liu ZP. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data. Curr Genomics. 2015;16(1):3–22. doi:10.2174/1389202915666141110210634.
  • Chen X, Pan Y, Yan M, Bao G, Sun X. Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis. Mol Med Rep. 2020;22(2):859–869. doi:10.3892/mmr.2020.11160.
  • Quan W, Li J, Jin X, Liu L, Zhang Q, Qin Y, Pei X, Chen J. Identification of Potential Core Genes in Parkinson’s Disease Using Bioinformatics Analysis. Parkinsons Dis. 2021;2021:1690341. doi:10.1155/2021/1690341.
  • Coninck B, De Smet I. Plant Peptides - Taking Them to the next Level. Journal of Experimental Botany. 2016;67(16):4791–4795. doi:10.1093/jxb/erw309.
  • Nakamura S, Suzuki T, Kawamukai M, Nakagawa T. Expression Analysis of Arabidopsis Thaliana Small Secreted Protein Genes. Bioscience, Biotechnology and Biochemistry. 2012;76(3):436–446. doi:10.1271/bbb.110649.
  • Couto D, Zipfel C. Regulation of Pattern Recognition Receptor Signalling in Plants. Nature Reviews Immunology. 2016;16(9):537–552. doi:10.1038/nri.2016.77.
  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131.
  • Obayashi T, Aoki Y, Tadaka S, Kagaya Y, Kinoshita K. ATTED-II in 2018: a Plant Coexpression Database Based on Investigation of the Statistical Property of the Mutual Rank Index. Plant Cell Physiol. 2018;59(1):e3. doi:10.1093/pcp/pcx191.
  • Obayashi T, Hibara H, Kagaya Y, Aoki Y, Kinoshita K. ATTED-II v11: A Plant Gene Coexpression Database Using a Sample Balancing Technique by Subagging of Principal Components. Plant Cell Physiol. 2022 Jun 15;63(6):869–881. doi:10.1093/pcp/pcac041. PMID: 35353884.
  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P. Genevestigator V3: a Reference Expression Database for the Meta-Analysis of Transcriptomes. Advances in Bioinformatics. 2008;2008:1–5. doi:10.1155/2008/420747.
  • Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A, Samaras P, Richter S, Shikata H, Messerer M, et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 2020;579(7799):409–414. doi:10.1038/s41586-020-2094-2.
  • Salomon D Historical Notes. In: Gries D F.B S., editors The Computer Graphics Manual. Springer; London, UK: 2011. pp. 9–27.
  • Pečenková T, Potocká A, Ortmannová, M, Drs M, J, Janková Drdová, E, Pejchar, P, Synek, L, Soukupová, H, Žárský, V, Cvrčková, F, et al. Redundant and Diversified Roles Among Selected Arabidopsis thaliana EXO70 Paralogs During Biotic Stress Responses. Frontiers in Plant Science. 2020;11:11. doi:10.3389/fpls.2020.00960.
  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL. Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular and Cellular Proteomics. 2007;6(7):1198–1214. doi:10.1074/mcp.M600429-MCP200.