1,793
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Cloning and expression study of a high-affinity nitrate transporter gene from Zea mays L

, , , , , & ORCID Icon show all
Article: 2163342 | Received 22 Oct 2022, Accepted 23 Dec 2022, Published online: 16 Jan 2023

References

  • Fu J, Zhu C, Wang C, Liu L, Shen Q, Xu D, Wang Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem. 2021;159:257–11. doi:10.1016/j.plaphy.2020.12.027.
  • Wu J, Jiang Y, Liang Y, Chen L, Chen W, Cheng B. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Biochem. 2019;137:179–188.
  • Liu L, Sun Y, Di P, Cui Y, Meng Q, Wu X, Chen Y, Yuan J. Overexpression of a Zea mays Brassinosteroid-Signaling Kinase Gene ZmBSK1 Confers Salt Stress Tolerance in Maize. Front Plant Sci. 2022;13:894710. doi:10.3389/fpls.2022.894710.
  • Chen X, Huang Q, Zhang F, Wang B, Wang J, Zheng J. ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci. 2014;15:14819–14834.
  • Yu C, Yan M, Dong H, Luo J, Ke Y, Guo A, Chen Y, Zhang J, Huang X. Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. Plant Sci. 2021;302:110676.
  • Zhao Y, Liu M, He L, Li X, Wang F, Yan B, Wei J, Zhao C, Li Z, Xu J. A cytosolic NAD+-dependent GPDH from maize (ZmGPDH1) is involved in conferring salt and osmotic stress tolerance. BMC Plant Biol. 2019;19:1–17.
  • Borkiewicz L, Polkowska‐Kowalczyk L, Cieśla J, Sowiński P, Jończyk M, Rymaszewski W, Szymańska KP, Jaźwiec R, Muszyńska G, Szczegielniak J. Expression of maize calcium‐dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II. Physiol Plant. 2020;168:38–57.
  • Qing D-J, H-F L, Li N, Dong H-T, Dong D-F, Y-Z L. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. Plant Cell Physiol. 2009;50:889–903.
  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ. Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol. 2003;52:873–891.
  • Forde BG. Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta. 2000;1465(1–2):219–235. doi:10.1016/S0005-2736(00)00140-1.
  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. Nitrate transporters and peptide transporters. FEBS Lett. 2007;581(12):2290–2300. doi:10.1016/j.febslet.2007.04.047.
  • Okamoto M, Vidmar JJ, Glass AD. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol. 2003;44(3):304–317. doi:10.1093/pcp/pcg036.
  • Plett D, Toubia J, Garnett T, Tester M, Kaiser BN, Baumann U. Dichotomy in the NRT gene families of dicots and grass species. PLoS One. 2010;5(12):e15289. doi:10.1371/journal.pone.0015289.
  • Quaggiotti S, Ruperti B, Borsa P, Destro T, Malagoli M. Expression of a putative high-affinity NO3- transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J Exp Bot. 2003;54(384):1023–1031. doi:10.1093/jxb/erg106.
  • Santi S, Locci G, Monte R, Pinton R, Varanini Z. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot. 2003;54(389):1851–1864. doi:10.1093/jxb/erg208.
  • Liu J, Chen F, Olokhnuud C, Glass A, Tong Y, Zhang F, Mi G. Root size and nitrogen-uptake activity in two maize (Zea mays) inbred lines differing in nitrogen-use efficiency. J Plant Nutr Soil Sci = Zeitschrift fuer Pflanzenernaehrung und Bodenkunde. 2010;172(2):230–236. doi:10.1002/jpln.200800028.
  • Ibrahim A, Jin XL, Zhang YB, Cruz J, Vichyavichien P, Esiobu N, Zhang XH. Tobacco plants expressing the maize nitrate transporter ZmNrt2.1 exhibit altered responses of growth and gene expression to nitrate and calcium. Bot Stud. 2017;58(1):51. doi:10.1186/s40529-017-0203-9.
  • Pii Y, Alessandrini M, Dall’Osto L, Guardini K, Prinsi B, Espen L, Zamboni A, Varanini Z. Time-resolved investigation of molecular components involved in the induction of [Formula: see text] high affinity transport system in Maize roots. Front Plant Sci. 2016;7:1657. doi:10.3389/fpls.2016.01657.
  • Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Liu Y, Zhang Z, Wang H. Expression of the nitrate transporter gene OsNRT1. 1A/OsNPF6. 3 confers high yield and early maturation in rice. Plant Cell. 2018;30(3):638–651. doi:10.1105/tpc.17.00809.
  • Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–743. doi:10.1046/j.1365-313x.1998.00343.x.
  • Wang Y, Ma H, Liu G, Xu C, Zhang D, Ban Q. Analysis of gene expression profile of Limonium bicolor under NaHCO3 stress using cDNA microarray. Plant Mol Biol Rep. 2008;26(3):241–254. doi:10.1007/s11105-008-0037-4.
  • Wang H, Wu Z, Han J, Wei Z, Yang C, Niedz RP. Comparison of Ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants. Plos One. 2012;7(5):e37817. doi:10.1371/journal.pone.0037817.
  • Zhao Z, Liu J, Jia R, Bao S, Haixia CX. Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. J Proteomics. 2019;193:10–26. doi:10.1016/j.jprot.2018.12.018.
  • Shavrukov Y. Salt stress or salt shock: which genes are we studying? J Exp Bot. 2013;64(1):119–127. doi:10.1093/jxb/ers316.
  • Woodrow P, Ciarmiello L, Annunziata M, Pacifico S, Iannuzzi F, Mirto A, D’Amelia L, Dell’Aversana E, Piccolella S, Fuggi A. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol Plant. 2017;159(3):290–312. doi:10.1111/ppl.12513.
  • Luo B, Chen J, Zhu L, Liu S, Li B, Lu H, Ye G, Xu G, Fan X. Overexpression of a high-affinity nitrate transporter OsNRT2.1 increases yield and manganese accumulation in rice under alternating wet and dry condition. Front Plant Sci. 2018;9:1192.
  • Jung J, Mccouch S. Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci. 2013;4:186.
  • Robin AHK, Matthew C, Uddin MJ, Bayazid KN. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J Exp Bot. 2016;67(12):3719–29. doi: 10.1093/jxb/erw064.
  • Chen K-E, Chen H-Y, Tseng C-S, Tsay Y-F. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nature Plants. 2020;6:1126–1135.
  • Guo B, Li Y, Wang S, Li D, Xu R. Characterization of the Nitrate Transporter gene family and functional identification of HvNRT2.1 in barley (Hordeum vulgare L.). PLoS ONE. 2020;15:e0232056.
  • Tong J, Walk TC, Han P, Chen L, Qin L. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. BMC Plant Biol. 2020;20:464.
  • Hua B, Euring D, Volmer K, Janz D, Polle A. The Nitrate Transporter (NRT) gene family in poplar. PLoS ONE. 2013;8:e72126.
  • Ehlting B, Dluzniewska P, Dietrich H, Selle A, Geler A. Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba). Plant Cell Environ. 2010;30:796–811.
  • He Q, Qiao D, Zhang Q, Li Y, Xu H, Wei L, Gu Y, Cao Y. Cloning and expression study of a putative high-affinity nitrate transporter gene from Dunaliella salina. J Appl Phycol. 2004;16:395–400.
  • Yang L, Juanqi L, Yan Y, Wenqian L, Wenna Z, Lihong G, Yongqiang T. Knock-down of CsNRT2.1, a cucumber nitrate transporter, reduces nitrate uptake, root length, and lateral root number at low external nitrate concentration. Front Plant Sci. 2018;9:722.
  • Ding X, Zhang S, M GH, Feng G. The effects of NaCl on affinity nitrate transport system in Suaeda physophora Pall. Plant Nutr Fertil Sci. 2011;17:175–179.
  • Nie L, Feng J, Fan P, Chen X, Guo J, Lv S, Bao H, Jia W, Tai F, Jiang P. Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in Salicornia europaea. J Exp Bot. 2015;66:4497–4510.
  • Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot. 2011;62:1399–1409.
  • Guo F-Q, Young J, Crawford NM. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell. 2003;15(1):107–17. doi: 10.1105/tpc.006312.
  • Álvarez-Aragón R, Rodríguez-Navarro A. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions. Plant J. 2017;91(2):208–219. doi:10.1111/tpj.13556.
  • Kanno Y, Hanada A, Chiba Y, Lchikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci. 2012;109:9653–9658.
  • Tahir MM, Wang H, Ahmad B, Liu Y, Fan S, Li K, Lei C, Shah K, Li S, Zhang D. Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Sci Hortic (Amsterdam). 2020;275:109642.