1,834
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Comprehensive analysis of complete chloroplast genome sequence of Plantago asiatica L. (Plantaginaceae)

, , , , &
Article: 2163345 | Received 01 Nov 2022, Accepted 23 Dec 2022, Published online: 02 Jan 2023

References

  • Wu P. Shen Nong Ben Cao Jing. Shanghai: Scientific and Technological Literature Publishing House; 1996.
  • Liu X, Wu X, Huang H, Zhong S, Lai X, Cao L. Herbalogical study on Plantago asiatica L. Zhong Yao Cai. 2002;25:46–15.
  • Committee CP. Pharmacopoeia of the people’s republic of China. Beijing: China Chemical Industry Press; 2020.
  • Chung MJ, Woo Park K, Heon Kim K, Kim CT, Pill Baek J, Bang KH, Choi YM, Lee SJ. Asian plantain (Plantago asiatica) essential oils suppress 3-hydroxy-3-methyl-glutaryl-co-enzyme A reductase expression in vitro and in vivo and show hypocholesterolaemic properties in mice. Br J Nutr. 2008;99(1):67–75. doi:10.1017/S0007114507798926.
  • Oto G, Ekin S, Ozdemir H, Demir H, Yasar S, Levent A, Berber I, Kaki B. Plantago major protective effects on antioxidant status after administration of 7,12-Dimethylbenz(a)anthracene in rats. Asian Pac J Cancer Prev. 2011;12:531–535.
  • Torigoe Y. Studies on the constituent of plantago asiatica LINNÉ. (1). Yakugaku Zasshi. 1965;85(2):176–178. doi:10.1248/yakushi1947.85.2_176.
  • Türel I, Ozbek H, Erten R, Oner AC, Cengiz N, Yilmaz O. Hepatoprotective and anti-inflammatory activities of Plantago major L. Indian J Pharmacol. 2009;41(3):120–124. doi:10.4103/0253-7613.55211.
  • Fan W, Zhang B, Wu C, Wu H, Wu J, Wu S, Zhang J, Yang X, Yang L, Hu Z, . Plantago asiatica L. seeds extract protects against cardiomyocyte injury in isoproterenol- induced cardiac hypertrophy by inhibiting excessive autophagy and apoptosis in mice. Phytomedicine. 2021;91:153681. doi:10.1016/j.phymed.2021.153681.
  • Niu Y, Li N, Alaxi S, Huang G, Chen L, Feng Z. A new heteropolysaccharide from the seed husks of Plantago asiatica L. with its thermal and antioxidant properties. Food Funct. 2017;8(12):4611–4618. doi:10.1039/C7FO01171G.
  • Gong L, Zhang H, Niu Y, Chen L, Liu J, Alaxi S, Shang P, Yu W, Yu L. A novel alkali extractable polysaccharide from Plantago asiatic L. Seeds and its radical-scavenging and bile acid-binding activitie. J Agric Food Chem. 2015;63(2):569–577. doi:10.1021/jf505909k.
  • Yoon MY, Kim HJ, Lee SJ, Han J. The effect of antioxidant and whitening action on Plantago asiatica L. leaf ethanol extract for health care. Technol Health Care. 2019;27(5):567–577. doi:10.3233/THC-191744.
  • Zhao S, Su Y, Liang H. Efficiency and mechanism of formaldehyde removal from air by two wild plants: plantago asiatica L. and Taraxacum mongolicum Hand.-Mazz. J Environ Health Sci Eng. 2019;17(1):141–150. doi:10.1007/s40201-018-00335-w.
  • Li F, Du P, Yang W, Huang D, Nie S, Xie M. Polysaccharide from the seeds of Plantago asiatica L. alleviates nonylphenol induced intestinal barrier injury by regulating tight junctions in human Caco-2 cell line. Int J Biol Macromol. 2020;164:2134–2140. doi:10.1016/j.ijbiomac.2020.07.259.
  • Song Y, Chen Y, Lv J, Xu J, Zhu S, Li M, Chen N. Development of chloroplast genomic resources for Oryza species discrimination. Front Plant Sci. 2017;8:1854. doi:10.3389/fpls.2017.01854.
  • Greiner S, Golczyk H, Malinova I, Pellizzer T, Bock R, Börner T, Herrmann RG. Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. Plant J. 2020;102(4):730–746. doi:10.1111/tpj.14658.
  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986;5(9):2043–2049. doi:10.1002/j.1460-2075.1986.tb04464.x.
  • Henriquez CL, Ahmed I, Carlsen MM, Zuluaga A, Croat TB, McKain MR. Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics. 2020;112(3):2349–2360. doi:10.1016/j.ygeno.2020.01.006.
  • Lan JP, Tong RC, Sun XM, Zhang HY, Sun S, Xiong AZ, Wang ZT, Yang L. Comparison of main chemical composition of Plantago asiatica L. and P. depressa Willd. seed extracts and their anti-obesity effects in high-fat diet-induced obese mice. Phytomedicine. 2021;81:153362. doi:10.1016/j.phymed.2020.153362.
  • Zhong CL, Cao, SQ, Sun, DM, Cheng, XR, Pan, LY, Ye, RL, Zhou, XY, Li, GW. Study on the different components of Plantaginis herba from different origins based on UPLC feature atlas. J Guangdong Pharm Univer (In Chinese). 2021;37:40–46.
  • Terakami S, Matsumura Y, Kurita K, Kanamori H, Katayose Y, Yamamoto T, Katayama H. Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis. Tree Genet Genomes. 2012;8(4):841–854. doi:10.1007/s11295-012-0469-8.
  • Xue S, Shi T, Luo W, Ni X, Iqbal S, Ni Z, Huang X, Yao D, Shen Z, Gao Z. Comparative analysis of the complete chloroplast genome among Prunus mume. P. Armeniaca, and P. Salicina. Hortic Res-England. 2019;6:89.
  • Batnini MA, Bourguiba H, Trifi-Farah N, Krichen L. Molecular diversity and phylogeny of Tunisian Prunus armeniaca L. by evaluating three candidate barcodes of the chloroplast genome. Sci Horti. 2019;245:99–106. doi:10.1016/j.scienta.2018.09.071.
  • Dhar MK, Friebe B, Kaul S, Gill BS. Characterization and physical mapping of ribosomal RNA gene families in Plantago. Ann Bot. 2006;97(4):541–548. doi:10.1093/aob/mcl017.
  • Madoka Y, Tomizawa KI, Mizoi J, Nishida I, Nagano Y, Sasaki Y. Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol. 2002;43(12):1518–1525. doi:10.1093/pcp/pcf172.
  • Peter E, Wallner T, Wilde A, Grimm B. Comparative functional analysis of two hypothetical chloroplast open reading frames (ycf) involved in chlorophyll biosynthesis from Synechocystis sp. PCC6803 and plants. J Plant Phys. 2011;168(12):1380–1386. doi:10.1016/j.jplph.2011.01.014.
  • Albach DC, Meudt HM, Oxelman B. Piecing together the “new” Plantaginaceae. Am J Bot. 2005;92(2):297–315. doi:10.3732/ajb.92.2.297.
  • Soltis DE, Soltis P, Endress PK, Chase MW. Phylogeny and evolution of angiosperms. Sunderland: Sinauer Associates; 2005.
  • APG II. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc. 2003;141(4):399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x.
  • APG III. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 2009;161(2):105–121. doi:10.1111/j.1095-8339.2009.00996.x.
  • Roy SW, Irimia M. Origins of human malaria: rare genomic changes and full mitochondrial genomes confirm the relationship of Plasmodium falciparum to other mammalian parasites but complicate the origins of Plasmodium vivax. Mol Biol Evol. 2008;25(6):1192–1198. doi:10.1093/molbev/msn069.
  • Saina JK, Gichira AW, Li ZZ, Hu GW, Wang QF, Liao K. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses. Genetica. 2018;146(1):101–113. doi:10.1007/s10709-017-0003-x.
  • Sharp PA. On the origin of RNA splicing and introns. Cell. 1985;42(2):397–400. doi:10.1016/0092-8674(85)90092-3.
  • Fonseca LHM, Lohmann LG. Plastome rearrangements in the “Adenocalymma-Neojobertia” Clade (Bignonieae, Bignoniaceae) and its phylogenetic implications. Front Plant Sci. 2017;8:1875. doi:10.3389/fpls.2017.01875.
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27.
  • Gottesman S. PROTEASES AND THEIR TARGETS IN Escherichia coli. Annu. Rev. Genet. 1996;30(1):465–506. doi:10.1146/annurev.genet.30.1.465.
  • Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T. The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol. 2001;42(3):264–273. doi:10.1093/pcp/pce031.
  • Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K. The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: sNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res. 2011;18(2):93–105. doi:10.1093/dnares/dsr002.
  • Xie DF, Yu Y, Deng YHQ, Li J, Liu HY, Zhou SD, He XJ. Comparative analysis of the chloroplast genomes of the Chinese endemic genus urophysa and their contribution to chloroplast phylogeny and adaptive evolution. Int J Mol Sci. 2018;19(7):1847. doi:10.3390/ijms19071847.
  • Liu Q, Xue Q. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J Genet. 2005;84(1):55–62. doi:10.1007/BF02715890.
  • Jia W, Higgs PG. Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol. 2008;25(2):339–351. doi:10.1093/molbev/msm259.
  • Zhang J, Huang H, Qu C, Meng X, Meng F, Yao X, Wu J, Guo X, Han B, Xing S, et al. Comprehensive analysis of chloroplast genome of Albizia julibrissin Durazz. (Leguminosae sp.). Planta. 2021;255(1):26. doi:10.1007/s00425-021-03812-z.
  • Wang Y, Wang Y, Ren Y, Duan E, Zhu X, Hao Y, Zhu J, Chen R, Lei J, Teng X, et al. white panicle 2 encoding thioredoxin z, regulates plastid RNA editing by interacting with multiple organellar RNA editing factors in rice. New Phytol. 2021;229(5):2693–2706. doi:10.1111/nph.17047.
  • Drescher A, Hupfer H, Nickel C, Albertazzi F, Hohmann U, Herrmann R, Maier R. C-to-U conversion in the intercistronic ndhI/ ndhG RNA of plastids from monocot plants: conventional editing in an unconventional small reading frame. Mol Genet Genomics. 2002;267(2):262–269. doi:10.1007/s00438-002-0662-9.
  • Hoch B, Maier RM, Appel K, Igloi GL, Kossel H. Editing of a chloroplast mRNA by creation of an initiation codon. Nature. 1991;353(6340):178–180. doi:10.1038/353178a0.
  • Zhu A, Guo W, Gupta S, Fan W, Mower JP. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 2016;209(4):1747–1756. doi:10.1111/nph.13743.
  • Khakhlova O, Bock R. Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J. 2006;46(1):85–94. doi:10.1111/j.1365-313X.2006.02673.x.
  • Yao X, Tang P, Li Z, Li D, Liu Y, Huang H. The first complete chloroplast genome sequences in actinidiaceae: genome structure and comparative analysis. PLoS One. 2015;10(6):e0129347. doi:10.1371/journal.pone.0129347.
  • Provan J, Powell W, Hollingsworth PM. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol. 2001;16(3):142–147. doi:10.1016/S0169-5347(00)02097-8.
  • Goulding SE, Olmstead RG, Morden CW, Wolfe KH. Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet. 1996;252(1–2):195–206. doi:10.1007/BF02173220.
  • Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K. Chloroplast Genome Sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: genome organization and comparison with other legumes. Front Plant Sci. 2016;7:1847. doi:10.3389/fpls.2016.01847.
  • Mower JP, Guo W, Partha R, Fan W, Levsen N, Wolff K, Nugent JM, Pabón-Mora N, González F. Plastomes from tribe Plantagineae (Plantaginaceae) reveal infrageneric structural synapormorphies and localized hypermutation for Plantago and functional loss of ndh genes from Littorella. Mol Phylogenet Evol. 2021;162:107217. doi:10.1016/j.ympev.2021.107217.
  • Biju VC, P.r. S, Vijayan S, Rajan VS, Sasi A, Janardhanan A, Nair AS. The complete chloroplast genome of trichopus zeylanicus, and phylogenetic analysis with dioscoreales. Plant Genome. 2019;12(3):1–11. doi:10.3835/plantgenome2019.04.0032.
  • Asaf S, Khan AL, khan A, Khan A, Khan G, Lee I-J, Al-Harrasi A. Expanded inverted repeat region with large scale inversion in the first complete plastid genome sequence of Plantago ovata. Sci Rep. 2020;10(1):3881. doi:10.1038/s41598-020-60803-y.
  • Si H, Li R, Zhang Q, Liu L. Complete chloroplast genome of Plantago asiatica and its phylogenetic position in Plantaginaceae. Mitoch DNA B Res. 2022;7:819–821.
  • Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30(1):31–37. doi:10.1093/bioinformatics/btt310.
  • Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578–579. doi:10.1093/bioinformatics/btq683.
  • Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13(6):R56. doi:10.1186/gb-2012-13-6-r56.
  • Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–829. doi:10.1101/gr.074492.107.
  • Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45(4):e18. doi:10.1093/nar/gkw955.
  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477. doi:10.1089/cmb.2012.0021.
  • Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004;20(17):3252–3255. doi:10.1093/bioinformatics/bth352.
  • Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33(Web Server):W686–689. doi:10.1093/nar/gki366.
  • Lohse M, Drechsel O, Kahlau S, Bock R. Organellar Genome DRAW–a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41(W1):W575–581. doi:10.1093/nar/gkt289.
  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29(22):4633–4642. doi:10.1093/nar/29.22.4633.
  • Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106(3):411–422. doi:10.1007/s00122-002-1031-0.
  • Mower JP. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009;37(Web Server):W253–259. doi:10.1093/nar/gkp337.
  • Du X, Zeng T, Feng Q, Hu L, Luo X, Weng Q, He J, Zhu B. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species. Gene. 2020;731:144340. doi:10.1016/j.gene.2020.144340.
  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. Vista: computational tools for comparative genomics. Nucleic Acids Res. 2004;32(Web Server):W273–279. doi:10.1093/nar/gkh458.
  • Amiryousefi A, Hyvonen J, Poczai P, Hancock J. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics. 2018;34(17):3030–3031. doi:10.1093/bioinformatics/bty220.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi:10.1093/molbev/mst010.
  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. doi:10.1093/bioinformatics/btp348.
  • Darriba D, Posada, D, Kozlov, AM, Stamatakis, A, Morel, B and Flouri, T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37(1):291–294. doi:10.1093/molbev/msz189.
  • Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–2690. doi:10.1093/bioinformatics/btl446.
  • Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–1452. doi:10.1093/bioinformatics/btp187.