3,040
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Evidence for the role of sound on the growth and signal response in duckweed

, , , , , , , , , & ORCID Icon show all
Article: 2163346 | Received 27 Jun 2022, Accepted 23 Dec 2022, Published online: 12 Jan 2023

References

  • Hassanien RHE, Tian-zhen HOU, Yu-feng LI, Bao-ming LI. Advances in effects of sound waves on plants. Journal of Integrative Agriculture. 2014;13(2):335–11. doi:10.1016/S2095-3119(13)60492-X.
  • Yeol Kim J, Lee H-J, Kim JA, Jeong M-J. Sound waves promote arabidopsis thaliana root growth by regulating root phytohormone content.int. J Mol Sci. 2021;22(11):5739. doi:10.3390/ijms22115739.
  • Laschimke M, Burger R, Vallen, Laschimke MH. Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. J Plant Physiol. 2006 Oct;163(10):996–1007. PMID: 16872717. doi:10.1016/j.jplph.2006.05.004.
  • Gagliano M. Green symphonies: a call for studies on acoustic communication in plants. Behav Ecol. 2013 Jul;24(4):789–796. 23754865. doi:10.1093/beheco/ars206.
  • Qin YC, Lee WC, Choi YC, Kim TW. Biochemical and physiological changes in plants as a result of different sonic exposures. Ultrasonics. 2003 Jul;41(5):407–411. PMID: 12788223. doi:10.1016/s0041-624x(03)00103-3.
  • López-Ribera I, Vicient CM. Drought tolerance induced by sound in Arabidopsis plants. Plant Signal Behav. 2017 Oct 3;12(10):e1368938. doi:10.1080/15592324.2017.1368938. PMID: 28829683.
  • Kim JY, Lee HJ, Kim JA, Jeong MJ. Sound waves promote arabidopsis thaliana root growth by regulating root phytohormone content. Int J Mol Sci. 2021 May 27;22(11):5739. doi:10.3390/ijms22115739. PMID: 34072151.
  • Cai W, He H, Zhu S, Wang N. Biological effect of audible sound control on mung bean (Vigna radiate) sprout. Biomed Res Int. 2014:931740. 25170517. doi:10.1155/2014/931740.PMID:.
  • Kim J-Y, Lee J-S, Kwon T-R, Lee S-I, Kim J-A, Lee G-M, Park S-C, Jeong M-J. Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes. Postharvest Biol Technol. 2015;110:43–50. doi:10.1016/j.postharvbio.2015.07.015.
  • Altuntas O, Ozkurt H. The assessment of tomato fruit quality parameters under different sound waves. J Food Sci Technol. 2019 Apr;56(4):2186–2194. PMID: 30996452. doi:10.1007/s13197-019-03701-0.
  • Veits M, Khait I, Obolski U, Zinger E, Boonman A, Goldshtein A, Saban K, Seltzer R, Ben‐Dor U, Estlein P, et al. Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecol Lett. 2019; Sep 22(9): 1483–1492. PMID: 31286633 10.1111/ele.13331.
  • Rajagopalan UM, Wakumoto R, Endo D, Hirai M, Kono T, Gonome H, Kadono H, Yamada J. Demonstration of laser biospeckle method for speedy in vivo evaluation of plant-sound interactions with arugula. PLoS One. 2021 Oct 28;16(10):e0258973. doi:10.1371/journal.pone.0258973. PMID: 34710145.
  • Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park SC, Jeong M-J, Bae H. Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in arabidopsis. Sci Rep. 2016 Sep 26;6(1):33370. doi:10.1038/srep33370. PMID: 27665921.
  • Frongia F, Forti L, Arru L. Sound perception and its effects in plants and algae. Plant Signal Behav. 2020 Dec 1;15(12):1828674. doi:10.1080/15592324.2020.1828674. PMID: 33048612.
  • Hendrawan Y, Hendrawan Y, Anniza KN, Prasetyo J, Djoyowasito G. Effect of plant sound wave technology to increase productivity of mustard greens (Brassica juncea L.). IOP Conference Series: Earth and Environmental Science Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Brawijaya, Malang, Indonesia. 2020; 524(1): 012012.
  • Choi B, Ghosh R, Gururani MA, Shanmugam G, Jeon J, Kim J, Park S-C, Jeong M-J, Han K-H, Bae D-W, et al. Positive regulatory role of sound vibration treatment in arabidopsis thaliana against botrytis cinerea infection. Sci Rep. 2017 May 30;7(1):2527. 10.1038/s41598-017-02556-9. PMID: 28559545.
  • Wang XJ, Wang BC, Jia Y, Duan CR, Sakanishi A. Effect of sound wave on the synthesis of nucleic acid and protein in chrysanthemum. Colloids Surf B Biointerfaces. 2003;29(2–3):99–102. doi:10.1016/S0927-7765(02)00152-2.
  • Kong D, Ju C, Parihar A, Kim S, Cho D, Kwak JM. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. Plant Physiol. 2015 Apr;167(4):1630–1642. PMID: 25681329. doi:10.1104/pp.114.251298.
  • Li ZG, Ye XY, Qiu XM. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling. Protoplasma. 2019 Jul;256(4):1165–1169. PMID: 30675652. doi:10.1007/s00709-019-01351-9.
  • Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S. Glutamate triggers long-distance, calcium-based plant defense signaling. Science. 2018 Sep 14;361(6407):1112–1115. doi:10.1126/science.aat7744. PMID: 30213912.
  • Zheng Y, Luo L, Wei J, Chen Q, Yang Y, Hu X, Kong X. The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana. Biochem Biophys Res Commun. 2018;506(4):895–900. doi:10.1016/j.bbrc.2018.10.153.
  • Liang J, He Y, Zhang Q, Wang W, Zhang Z. Plasma membrane ca2+ permeable mechanosensitive channel OsDMT1 is involved in regulation of plant architecture and ion homeostasis in rice. Int J Mol Sci. 2020 Feb 7;21(3):1097. doi:10.3390/ijms21031097. PMID: 32046032.
  • Liu Q, Ding Y, Shi Y, Ma L, Wang Y, Song C, Wilkins K. A, Davies, J. M, Knight H, Knight M. R, Gong Z, Guo Y, Yang, S. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J. 2021 Jan 15;40(2):e104559. 10.1038/s41598-017-02556-9. PMID: 33372703.
  • Patra N, Hariharan S, Gain H, Maiti MK, Das A, Banerjee J. TypiCal but delicate ca++re: dissecting the essence of calcium signaling network as a robust response coordinator of versatile abiotic and biotic stimuli in plants. Front Plant Sci. 2021 Nov 25;12. 752246. 10.3389/fpls.2021.752246. PMID: 34899779.
  • Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li, T. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal Behav. 2019;14(11):1665455. PMID: 31564206. doi:10.1080/15592324.2019.1665455.
  • GL Y, Feng D, YT L, SM L, MM Z, AJ T. Research progress of a potential bioreactor: duckweed.Biomolecules 2021 Jan 13 11(1): 93. https://doi.org/10.3390/biom11010093 PMID: 33450858
  • Sun Z, Guo W, Yang J, Zhao X, Chen Y, Yao L, Hou H. Enhanced biomass production and pollutant removal by duckweed in mixotrophic conditions. Bioresour Technol. 2020 Dec;317:124029 . PMID: 32916457. doi:10.1016/j.biortech.2020.124029.
  • Wang W, Messing J, Appenroth K. Status of duckweed genomics and transcriptomics. Plant Biol (Stuttg). 2015 Jan;17:10–15 . PMID: 24995947. doi:10.1111/plb.12201.
  • Yu C, Zhao X, Qi G, Bai Z, Wang Y, Wang S, Ma Y, Liu Q, Hu R, Zhou G, et al. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. Biotechnol Biofuels. 2017 Jun 26;10(1):167. 10.1186/s13068-017-0851-8. PMID: 28670341.
  • Stomp AM. The duckweeds: a valuable plant for biomanufacturing. Biotechnol Annu Rev. 2005;11:69–99. PMID: 16216774. doi:10.1016/S1387-2656(05)11002-3.
  • Roman B, Brennan RA, Lambert JD. Duckweed protein supports the growth and organ development of mice: a feeding study comparison to conventional casein protein. J Food Sci. 2021 Mar;86(3):1097–1104. PMID: 33624354. doi:10.1111/1750-3841.15635.
  • Yang L, Ren Q, Ma X, Wang M, Sun J, Wang S, Wu X, Chen X, Wang C, Li Q, et al. New insight into the effect of riluzole on cadmium tolerance and accumulation in duckweed (Lemna turionifera). Ecotoxicol Environ Saf. 2022 Aug;241:113783. doi:10.1016/j.jplph.2006.05.004.
  • Bochu W, Xin C, Zhen W, Qizhong F, Hao Z, Liang R. Biological effect of sound field stimulation on paddy rice seeds. Colloids Surf B Biointerfaces. 2003;32(1):29–34. doi:10.1016/S0927-7765(03)00128-0.
  • Goodman R, Shirley-Henderson A. Transcription and translation in cells exposed to extremely low frequency electromagnetic fields. J Electroanal Chem Interfacial Electrochem. 1991;320(3):335–355. doi:10.1016/0022-0728(91)85651-5.
  • Meng QW, Zhou Q, Zheng SJ, Gao Y. Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave. Energy Procedia. 2012;16:346–352. doi:10.1016/j.egypro.2012.01.057.
  • Chen YE, Ma J, Wu N, Su YQ, Zhang ZW, Yuan M, Zhang H-Y, Zeng X-Y, Yuan S. The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions. Plant Physiol Biochem. 2018 Sep;130:267–276 . PMID: 30032070. doi:10.1016/j.plaphy.2018.07.014.
  • Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun. 2014;5(1):3311. PMID: 24548928. doi:10.1038/ncomms4311.
  • Zhang Y, An D, Li C, Zhao Z, Wang W. The complete chloroplast genome of greater duckweed (Spirodela polyrhiza 7498) using PacBio long reads: insights into the chloroplast evolution and transcription regulation. BMC Genomics. 2020 Jan 28;21(1):76. doi:10.1186/s12864-020-6499-y. PMID: 31992185.
  • Ma X, Li QH, Yu YN, Qiao YM, Haq SU, Gong ZH. The CBL-CIPK pathway in plant response to stress signals. Int J Mol Sci. 2020 Aug 7;21(16):5668. doi:10.3390/ijms21165668. PMID: 32784662.
  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell. 2002;14(suppl 1):S389–400. doi:10.1105/tpc.001115. PMID: 12045290
  • Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F. Insights on calcium-dependent protein kinases (cpks) signaling for abiotic stress tolerance in plants. Int J Mol Sci. 2019 Oct 24;20(21):5298. doi:10.3390/ijms20215298. PMID: 31653073.
  • Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M. An NADPH Oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell. 2017 Apr;29(4):775–790. doi:10.1105/tpc.16.00976.
  • Kosová K, Vítámvás P, Prášil IT, Renaut J. Plant proteome changes under abiotic stress — contribution of proteomics studies to understanding plant stress response. J Proteomics. 2011 Aug 12;74(8):S389–S400. doi:10.1105/tpc.001115. PMID: 21329772.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8. PMID: 25516281
  • Bu, Haitao Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2 July 2021;49(W1):W317–W325. doi:10.1093/nar/gkab447