2,085
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

Submerged leaves of live indoor foliage plants adsorb H1N1 influenza virus from suspension

, , , , , , , , & ORCID Icon show all
Article: 2163869 | Received 27 Oct 2022, Accepted 27 Dec 2022, Published online: 12 Jan 2023

References

  • Chen X, Zhou Z, Teng M, Wang P, Zhou L. Accumulation of three different sizes of particulate matter on plant leaf surfaces: effect on leaf traits. Arch Biol Sci. 2015;67(4):1257–9. doi:10.2298/ABS150325102C.
  • Sternberg T, Viles H, Cathersides A, Edwards M. Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Sci Total Environ. 2010;409(1):162–168. doi:10.1016/j.scitotenv.2010.09.022.
  • Leonard RJ, McArthur C, Hochuli DF. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For Urban Green. 2016;20:249–253. doi:10.1016/j.ufug.2016.09.008.
  • Kim KJ, Khalekuzzaman M, Suh JN, Kim HJ, Shagol C, Kim HH, Kim HJ. Phytoremediation of volatile organic compounds by indoor plants: a review. Hortic Environ Biotechnol. 2018;59(2):143–157. doi:10.1007/s13580-018-0032-0.
  • El-Tanbouly R, Hassan Z, El-Messeiry S. The role of indoor plants in air purification and human health in the context of COVID-19 pandemic: a proposal for a novel line of inquiry. Front Mol Biosci. 2021;8:624. doi:10.3389/fmolb.2021.709395.
  • Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J. Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci. 2017;8:1318. doi:10.3389/fpls.2017.01318.
  • Wolverton BC, Wolverton JD. Interior plants: their influence on airborne microbes inside energy-efficient buildings. J Miss Acad Sci. 1996;41:99–105.
  • Lee JK, Kim DY, Park SH, Woo SY, Nie H, Kim SH. Particulate matter (PM) adsorption and leaf characteristics of ornamental sweet potato (Ipomoea batatas L.) cultivars and two common indoor plants (Hedera helix L. and Epipremnum aureum Lindl. & Andre). Horticulturae. 2022;8(1):26. doi:10.3390/horticulturae8010026.
  • Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, Lam SS, Sonne C. A review on phytoremediation of contaminations in air, water and soil. J Hazard Mater. 2021;403:123658. doi:10.1016/j.jhazmat.2020.123658.
  • Yoon JW, Son KC, Yang DS, Kays SJ. Removal of indoor tobacco smoke under light and dark conditions as affected by foliage plants. Hortic Sci Technol. 2009;27:312–318.
  • Choi YK, Song HJ, Jo JW, Bang SW, Park BH, Kim HH, Kim KJ, Jeong NR, Kim JH, Kim HJ. Morphological and chemical evaluations of leaf surface on particulate matter2.5 (pm2.5) removal in a botanical plant-based biofilter system. Plants. 2021;10(12):2761. doi:10.3390/plants10122761.
  • Rane NR, Tapase S, Kanojia A, Watharkar A, Salama ES, Jang M, Yadav KK, Amin MA, Cabral-Pinto MM, Jadhav JP. Molecular insights into plant-microbe interactions for sustainable remediation of contaminated environment. Bioresour Technol. 2022;344:126246. doi:10.1016/j.biortech.2021.126246.
  • Gawronska H, Bakera B. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual Atmos Health. 2015;8(3):265–272. doi:10.1007/s11869-014-0285-4.
  • Kwon KJ, Kwon HJ, Oh YA, Kim SY, Park BJ. Particulate matter removal of three woody plant species, ardisia crenata. Ardisia Japonica Maesa Japonica Sustainability. 2021;13(19):11017. doi:10.3390/su131911017.
  • Zhang W, Zhang Z, Meng H, Zhang T. How does leaf surface micromorphology of different trees impact their ability to capture particulate matter? Forests. 2018;9(11):681. doi:10.3390/f9110681.
  • Vega E, Garland J, Pillai SD. Electrostatic forces control nonspecific virus attachment to lettuce. J Food Prot. 2008;71(3):522–529. doi:10.4315/0362-028X-71.3.522.
  • Fuzawa M, Ku KM, Palma-Salgado SP, Nagasaka K, Feng H, Juvik JA, Sano D, Shisler JL, Nguyen TH. Effect of leaf surface chemical properties on efficacy of sanitizer for rotavirus inactivation. Appl Environ Microbiol. 2016;82(20):6214–6222. doi:10.1128/AEM.01778-16.
  • Chang MJ, Kim CJ, Choi YK, Song HJ, Shim SY, Lee SH, Yang YH, Kim KJ, Kim HJ. Effect of electrical ground connection on plant growth. Bull Korean Chem Soc. 2017;38(12):1491–1494. doi:10.1002/bkcs.11304.
  • Kim HJ, Song HJ, Yang YH, Kim CJ, Lee WS, Yoon TH, Shim SY, Chang MJ, Lee SH, Jeong WY (2020). Apparatus for enhancing fine particle adsorption power of plants through electrical grounding(KR. Patent NO. 1020746110000). KOREAN INTELLECTUAL PROPERTY OFFICE. doi:10.8080/1020190055856
  • Maffei ME. Magnetic field effects on plant growth, development, and evolution. Front Plant Sci. 2014;5:445. doi:10.3389/fpls.2014.00445.
  • Yang Y, Kim JE, Song HJ, Lee EB, Choi YK, Jo JW, Jeon HJ, Kim HH, Kim KJ, Kim HJ. Methodology: non-invasive monitoring system based on standing wave ratio for detecting water content variations in plants. Plant Methods. 2021;17(1):1–9. doi:10.1186/s13007-021-00757-y.
  • Wolverton BC, Johnson A, Bounds K. 1989. Interior landscape plants for indoor air pollution abatement. National Aeronaut Space Administration. NASA–TM–101766.
  • Deng H, Chen Z, Zhao F. Energy from plants and microorganisms: progress in plant–microbial fuel cells. ChemSusChem. 2012;5(6):1006–1011. doi:10.1002/cssc.201100257.
  • Dziabowska K, Czaczyk E, Nidzworski D. Detection methods of human and animal influenza virus- current trends. Biosensors. 2018;8(4):94. doi:10.3390/bios8040094.
  • Ward CL, Dempsey MH, Ring CJA, Kempson RE, Zhang L, Gor D, Snowden BW, Tisdale M. Design and performance testing of quantitative real-time PCR assays for influenza A and B viral load measurement. J Clin Virol. 2004;29(3):179–188. doi:10.1016/S1386-6532(03)00122-7.
  • Baer A, Kehn-Hall K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. JoVE. 2014;93:e52065.
  • Pinon A, Vialette M. Survival of viruses in water. Intervirology. 2018;61(5):214–222. doi:10.1159/000484899.
  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P. Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci. 2016;7:1288. doi:10.3389/fpls.2016.01288.
  • Wang WN, Tarafdar JC, Biswas P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res. 2013;15(1):1–13. doi:10.1007/s11051-013-1417-8.
  • Korkina LG. Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol (Noisy-le-grand). 2007;53:15–25.
  • Das SK, Sengupta P, Mustapha MS, Kifayatudullah M, Gousuddin M. Phytochemical investigation and antioxidant screening of crude leaves extract from Epipremnum aureum. Int J Pharmacogn Phytochem Res. 2015;7:684–689.
  • Prabakaran M, Hemapriya V, Kim SH, Chung IM. Evaluation of antioxidant and anticorrosion properties of Epipremnum aureum. Arab J Sci Eng. 2019;44(1):169–178. doi:10.1007/s13369-018-3398-5.
  • Chen SY, Anderson S, Kutty PK, Lugo F, McDonald M, Rota PA, Ortega-Sanchez IR, Komatsu K, Armstrong GL, Sunenshine R. Health care-associated measles outbreak in the United States after an importation: challenges and economic impact. J Infect Dis. 2011;203(11):1517–1525. doi:10.1093/infdis/jir115.
  • Lindsley WG, Blachere FM, Thewlis RE, Vishnu A, Davis KA, Cao G, Palmer JE, Clark KE, Fisher MA, Khakoo R. Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One. 2010;5(11):e15100. doi:10.1371/journal.pone.0015100.
  • Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLOS Pathog. 2013;9(3):e1003205. doi:10.1371/journal.ppat.1003205.
  • Seymour IJ, Appleton H. Foodborne viruses and fresh produce. J Appl Microbiol. 2001;91(5):759. doi:10.1046/j.1365-2672.2001.01427.x.
  • Berry G, Parsons A, Morgan M, Rickert J, Cho H. A review of methods to reduce the probability of the airborne spread of COVID-19 in ventilation systems and enclosed spaces. Environ Res. 2022;203:111765. doi:10.1016/j.envres.2021.111765.
  • Repacholi MH, Greenebaum B. Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs †. Bioelectromagnetics. 1999;20(3):133–160. doi:10.1002/(SICI)1521-186X(1999)20:3<133::AID-BEM1>3.0.CO;2-O.
  • Chevalier G, Sinatra ST, Oschman JL, Sokal K, Sokal P. Earthing: health implications of reconnecting the human body to the earth’s surface electrons. J Environ Public Health. 2012;2012:291541. doi:10.1155/2012/291541.
  • Jamieson IA, Jamieson SS, Apsimon HM, Bell JNB. Grounding & human health – a review. J Phys Conf Ser. 2011;301(1):012024. doi:10.1088/1742-6596/301/1/012024.
  • Kaur I, Gupta RC, Puri M. Ribosome inactivating proteins from plants inhibiting viruses. Virol Sin. 2011;26(6):357–365. doi:10.1007/s12250-011-3223-8.
  • Van Damme Els JM, Hao Q, Chen Y, Barre A, Vandenbussche F, Desmyter S, Rouge P, Peumans WJ. Ribosome-inactivating proteins: a family of plant proteins that do more than inactivate ribosomes. Plant Sci. 2001;20(5):395–465. doi:10.1080/07352689.2001.10131826.
  • Urzua A, Caroli M, Vasquez L, Mendoza L, Wilkens M, Tojo E. Antimicrobial study of the resinous exudate and of diterpenoids isolated from Eupatorium salvia (Asteraceae). J Ethnopharmacol. 1998;62(3):251–254. doi:10.1016/S0378-8741(98)00068-3.
  • Wannomai T, Kemacheevakul P, Thiravetyan P. Removal of trimethylamine from indoor air using potted plants under light and dark conditions. Aerosol Air Qual Res. 2019;19(5):1105–1113. doi:10.4209/aaqr.2018.09.0334.
  • Lu L, Ku KM, Palma-Salgado SP, Storm AP, Feng H, Juvik JA, Nguyen TH. Influence of epicuticular physicochemical properties on porcine rotavirus adsorption to 24 leafy green vegetables and tomatoes. PLoS One. 2015;10(7):e0132841. doi:10.1371/journal.pone.0132841.
  • Bradford KJ, Hsiao TC. Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiol. 1982;70(5):1508–1513. doi:10.1104/pp.70.5.1508.