1,355
Views
1
CrossRef citations to date
0
Altmetric
Review

New insights into the functions and regulations of MAP215/MOR1 and katanin, two conserved microtubule-associated proteins in Arabidopsis

ORCID Icon & ORCID Icon
Article: 2171360 | Received 20 Nov 2022, Accepted 18 Jan 2023, Published online: 31 Jan 2023

References

  • Paredez AR, Somerville CR, Ehrhardt DW. Visualization of cellulose synthase demonstrates functional association with microtubules. Science. 2006;312(5779):1491–6. doi:10.1126/science.1126551.
  • Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol. 2009;11(7):797–806. doi:10.1038/ncb1886.
  • Lloyd C, Chan J. Microtubules and the shape of plants to come. Nat Rev Mol Cell Biol. 2004;5(1):13–22. doi:10.1038/nrm1277.
  • Livanos P, Muller S. Division Plane Establishment and Cytokinesis. Annu Rev Plant Biol. 2019;70(1):239–267. doi:10.1146/annurev-arplant-050718-100444.
  • Buschmann H, Muller S. Update on plant cytokinesis: rule and divide. Curr Opin Plant Biol. 2019;52:97–105. doi:10.1016/j.pbi.2019.07.003.
  • Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, et al. The chara genome: secondary complexity and implications for plant terrestrialization. Cell. 2018;174(2):448–464. doi:10.1016/j.cell.2018.06.033.
  • Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol. 2014;312:1–52.
  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO. MOR1 is essential for organizing cortical microtubules in plants. Nature. 2001;411:610–613.
  • Bichet A, Desnos T, Turner S, Grandjean O, Hofte H. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J. 2001;25:137–148.
  • Burk DH, Liu B, Zhong R, Morrison WH, Ye ZH. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell. 2001;13:807–827.
  • Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S. The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol. 2017;173(3):1692–1708. doi:10.1104/pp.16.01743.
  • Wang C, Liu W, Wang G, Li J, Dong L, Han L, Wang Q, Tian J, Yu Y, Gao C, et al. KTN80 confers precision to microtubule severing by specific targeting of katanin complexes in plant cells. EMBO J. 2017;36(23):3435–3447. doi:10.15252/embj.201796823.
  • Liu H, Cao Y, Zhang W, Liu Z, Li Y, Chen Y, Zhang H, Yu F, Liu X. The wheat TaIQD3D-6 gene encodes a microtubule-associated protein and regulates cell morphogenesis in Arabidopsis. Plant Sci. 2022;324:111420. doi:10.1016/j.plantsci.2022.111420.
  • Tournebize R, Popov A, Kinoshita K, Ashford AJ, Rybina S, Pozniakovsky A, Mayer TU, Walczak CE, Karsenti E, Hyman AA, et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol. 2000;2(1):13–19. doi:10.1038/71330.
  • Widlund PO, Stear JH, Pozniakovsky A, Zanic M, Reber S, Brouhard GJ, Hyman AA, Howard J. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proc Natl Acad Sci U S A. 2011;108(7):2741–2746. doi:10.1073/pnas.1016498108.
  • Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA. XMAP215 is a processive microtubule polymerase. Cell. 2008;132(1):79–88. doi:10.1016/j.cell.2007.11.043.
  • Flor-Parra I, Iglesias-Romero AB, Chang CF. The XMAP215 Ortholog Alp14 Promotes Microtubule Nucleation in Fission Yeast. Curr Biol. 2018;28(11):1681–1691. doi:10.1016/j.cub.2018.04.008.
  • Gunzelmann J, Ruthnick D, Lin TC, Zhang W, Neuner A, Jakle U, Schiebel E. The microtubule polymerase Stu2 promotes oligomerization of the gamma-TuSC for cytoplasmic microtubule nucleation. Elife. 2018;7:e39932. doi:10.7554/eLife.39932.
  • Thawani A, Kadzik RS, Petry S. XMAP215 is a microtubule nucleation factor that functions synergistically with the gamma-tubulin ring complex. Nat Cell Biol. 2018;20(5):575–585. doi:10.1038/s41556-018-0091-6.
  • Lechner B, Rashbrooke MC, Collings DA, Eng RC, Kawamura E, Whittington AT, Wasteneys GO. The N-terminal TOG domain of Arabidopsis MOR1 modulates affinity for microtubule polymers. J Cell Sci. 2012;125(Pt 20):4812–4821. doi:10.1242/jcs.107045.
  • Chen Y, Liu X, Zhang W, Li J, Liu H, Yang L, Lei P, Zhang H, Yu F. MOR1/MAP215 acts synergistically with katanin to control cell division and anisotropic cell elongation in Arabidopsis. Plant Cell. 2022;34(8):3006–3027. doi:10.1093/plcell/koac147.
  • Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO. MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol. 2006;140(1):102–114. doi:10.1104/pp.105.069989.
  • Collings DA, Lill AW, Himmelspach R, Wasteneys GO. Hypersensitivity to cytoskeletal antagonists demonstrates microtubule–microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytol. 2006;170(2):275–290. doi:10.1111/j.1469-8137.2006.01671.x.
  • Park SK, Twell D. Novel patterns of ectopic cell plate growth and lipid body distribution in the Arabidopsis gemini pollen1 mutant. Plant Physiol. 2001;126(2):899–909. doi:10.1104/pp.126.2.899.
  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ. MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol. 2002;4(9):711–714. doi:10.1038/ncb844.
  • Konishi M, Sugiyama M. Genetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana. Development. 2003;130(23):5637–5647. doi:10.1242/dev.00794.
  • Kawamura E, Wasteneys GO. MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci. 2008;121(24):4114–4123. doi:10.1242/jcs.039065.
  • McNally FJ, Roll-Mecak A. Microtubule-severing enzymes: from cellular functions to molecular mechanism. J Cell Biol. 2018;217(12):4057–4069. doi:10.1083/jcb.201612104.
  • Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, Thomas S, Cheesman S, Heuser J, Vale RD, McNally FJ, et al. Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell. 1998;93(2):277–287. doi:10.1016/S0092-8674(00)81578-0.
  • Hartman JJ, Vale RD. Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science. 1999;286(5440):782–785. doi:10.1126/science.286.5440.782.
  • Stoppin-Mellet V, Gaillard J, Vantard M. Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem J. 2002;365(2):1692–1708. doi:10.1042/bj20020689.
  • Zehr E, Szyk A, Piszczek G, Szczesna E, Zuo X, Roll-Mecak A. Katanin spiral and ring structures shed light on power stroke for microtubule severing. Nat Struct Mol Biol. 2017;24:717–725.
  • Faltova L, Jiang K, Frey D, Wu Y, Capitani G, Prota AE, Akhmanova A, Steinmetz MO, Kammerer RA. Crystal Structure of a Heterotetrameric Katanin p60: p80Complex. Structure. 2019;27(9):1375–1383. doi:10.1016/j.str.2019.07.002.
  • Luptovčiak I, Komis G, Takáč T, Ovečka M, Šamaj J. Katanin: a sword cutting microtubules for cellular, developmental, and physiological purposes. Front Plant Sci. 2017;8:1982. doi:10.3389/fpls.2017.01982.
  • Zhang Q, Fishel E, Bertroche T, Dixit R. Microtubule severing at crossover sites by katanin generates ordered cortical microtubule arrays in Arabidopsis. Curr Biol. 2013;23(21):2191–2195. doi:10.1016/j.cub.2013.09.018.
  • Nakamura M, Ehrhardt DW, Hashimoto T. Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat Cell Biol. 2010;12(11):4812–4821. doi:10.1038/ncb2110.
  • Sasaki T, Tsutsumi M, Otomo K, Murata T, Yagi N, Nakamura M, Nemoto T, Hasebe M, Oda Y. A novel katanin-tethering machinery accelerates cytokinesis. Curr Biol. 2019;29(23):3006–3027. doi:10.1016/j.cub.2019.09.049.
  • Komis G, Luptovčiak I, Ovečka M, Samakovli D, Šamajová O, Šamaj J. Katanin effects on dynamics of cortical microtubules and mitotic arrays in Arabidopsis thaliana revealed by advanced live-cell imaging. Front Plant Sci. 2017;8:866. doi:10.3389/fpls.2017.00866.
  • Lindeboom JJ, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons AMC, Mulder BM, Kirik V, Ehrhardt DW, et al. A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science. 2013;342(6163):1245533. doi:10.1126/science.1245533.
  • Nakamura M. Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. New Phytol. 2015;205(3):1022–1027. doi:10.1111/nph.12932.
  • Komis G, Mistrik M, Samajová O, Doskočilová A, Ovečka M, Illés P, Bartek J, Samaj J. Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy. Plant Physiol. 2014;165(1):129–148. doi:10.1104/pp.114.238477.
  • Vavrdová T, Šamajová O, Křenek P, Ovečka M, Floková P, Šnaurová R, Šamaj J, Komis G. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. Plant Methods. 2019;15(1):22. doi:10.1186/s13007-019-0406-z.
  • Vavrdová T, Křenek P, Ovečka M, Šamajová O, Floková P, Illešová P, Šnaurová R, Šamaj J, Komis G. Complementary superresolution visualization of composite plant microtubule organization and dynamics. Front Plant Sci. 2020;11:693. doi:10.3389/fpls.2020.00693.
  • Panteris E, Kouskouveli A, Pappas D, Adamakis IS. Cytokinesis in fra2 Arabidopsis thaliana p60-katanin mutant: defects in cell plate/daughter wall formation. Int J Mol Sci. 2021;22(3):1405. doi:10.3390/ijms22031405.
  • Luo D, Oppenheimer DG. Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci. Development. 1999;126(24):5547–5557. doi:10.1242/dev.126.24.5547.
  • Burk DH, Ye Z-H. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell. 2002;14(9):2145–2160. doi:10.1105/tpc.003947.
  • Webb M, Jouannic S, Foreman J, Linstead P, Dolan L. Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3 – a katanin-p60 protein. Development. 2002;129(1):123–131. doi:10.1242/dev.129.1.123.
  • Bouquin T, Mattsson O, Naested H, Foster R, Mundy J. The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci. 2003;116(5):791–801. doi:10.1242/jcs.00274.
  • Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D, Yang Z, Fu Y. Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr Biol. 2013;23(4):290–297. doi:10.1016/j.cub.2013.01.022.
  • Luptovčiak I, Samakovli D, Komis G, Šamaj J. KATANIN 1 is essential for embryogenesis and seed formation in arabidopsis. Front Plant Sci. 2017;8:728. doi:10.3389/fpls.2017.00728.
  • Ren H, Dang X, Cai X, Yu P, Li Y, Zhang S, Liu M, Chen B, Lin D. Spatio-temporal orientation of microtubules controls conical cell shape in Arabidopsis thaliana petals. PLoS Genet. 2017;13(6):e1006851. doi:10.1371/journal.pgen.1006851.
  • Riglet L, Rozier F, Kodera C, Bovio S, Sechet J, Fobis-Loisy I, Gaude T. KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis. Elife. 2020;9:e57282. doi:10.7554/eLife.57282.
  • Li Y, Deng M, Liu H, Li Y, Chen Y, Jia M, Xue H, Shao J, Zhao J, Qi Y, et al. ABNORMAL SHOOT 6 interacts with KATANIN 1 and SHADE AVOIDANCE 4 to promote cortical microtubule severing and ordering in Arabidopsis. J Integr Plant Biol. 2021;63(4):646–661. doi:10.1111/jipb.13003.
  • Paraskevopoulou D, Anezakis N, Giannoutsou E, Sotiriou P, Adamakis I-DS. The Stomata of the Katanin Mutants, fra2, lue1 and bot1. Bio Life Sci Forum. 2021;4:30.
  • Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, et al. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell. 2012;149(2):439–451. doi:10.1016/j.cell.2012.02.048.
  • Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jönsson H, Meyerowitz EM. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. Elife. 2014;3:e01967. doi:10.7554/eLife.01967.
  • Yang J, An B, Luo H, He C, Wang Q. AtKATANIN1. Int J Mol Sci. 2019;21(1):138. doi:10.3390/ijms21010138.
  • Eng RC, Schneider R, Matz TW, Carter R, Ehrhardt DW, Jonsson H, Nikoloski Z, Sampathkumar A. KATANIN and CLASP function at different spatial scales to mediate microtubule response to mechanical stress in Arabidopsis cotyledons. Curr Biol. 2021;31(15):3262–3274. doi:10.1016/j.cub.2021.05.019.
  • Miao R, Siao W, Zhang N, Lei Z, Lin D, Bhalerao RP, Lu C, Xu W. Katanin-dependent microtubule ordering in association with ABA is important for root hydrotropism. Int J Mol Sci. 2022;23(7):3846. doi:10.3390/ijms23073846.
  • Baral A, Aryal B, Jonsson K, Morris E, Demes E, Takatani S, Verger S, Xu T, Bennett M, Hamant O, et al. External mechanical cues reveal a katanin-independent mechanism behind auxin-mediated tissue bending in plants. Dev Cell. 2021;56(1):67–80. doi:10.1016/j.devcel.2020.12.008.
  • Wightman R, Chomicki G, Kumar M, Carr P, Turner SR. SPIRAL2 determines plant microtubule organization by modulating microtubule severing. Curr Biol. 2013;23(19):1902–1907. doi:10.1016/j.cub.2013.07.061.
  • Fan Y, Burkart GM, Dixit R. The Arabidopsis SPIRAL2 protein targets and stabilizes microtubule minus ends. Curr Biol. 2018;28(6):987–994. doi:10.1016/j.cub.2018.02.014.
  • Lindeboom JJ, Nakamura M, Saltini M, Hibbel A, Walia A, Ketelaar T, Emons AMC, Sedbrook JC, Kirik V, Mulder BM, et al. CLASP stabilization of plus ends created by severing promotes microtubule creation and reorientation. J Cell Biol. 2019;218(1):190–205. doi:10.1083/jcb.201805047.
  • Yagi N, Kato T, Matsunaga S, Ehrhardt DW, Nakamura M, Hashimoto T. An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites. Nat Commun. 2021;12(1):3687. doi:10.1038/s41467-021-24067-y.
  • Wang G, Wang C, Liu W, Ma Y, Dong L, Tian J, Yu Y, Kong Z. Augmin antagonizes katanin at microtubule crossovers to control the dynamic organization of plant cortical arrays. Curr Biol. 2018;28(8):1311–1317. doi:10.1016/j.cub.2018.03.007.
  • Feng X, Pan S, Tu H, Huang J, Xiao C, Shen X, You L, Zhao X, Chen Y, Xu D, et al. IQ67 DOMAIN protein 21 is critical for indentation formation in pavement cell morphogenesis. J Integr Plant Biol. 2022. doi:10.1111/jipb.13393.
  • Ren H, Rao J, Tang M, Li Y, Dang X, Lin D. PP2A interacts with KATANIN to promote microtubule organization and conical cell morphogenesis. J Integr Plant Biol. 2022;64(8):1514–1530. doi:10.1111/jipb.13281.
  • Gorelova V. MOR1 keeps microtubule severing by KTN1 in the right tempo. Plant Cell. 2022;34(8):2825–2826. doi:10.1093/plcell/koac160.