1,324
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Resistance induction with silicon in Hass avocado plants inoculated with Phytophthora cinnamomi Rands

ORCID Icon, , , , , , & show all
Article: 2178362 | Received 24 Aug 2022, Accepted 02 Feb 2023, Published online: 22 Feb 2023

References

  • Granados W, Valencia J. Minagricultura. Bogotá, Colombia: Ministerio de Agricultura de Colombia; 2018. [accessed2022 01 14]. https://sioc.minagricultura.gov.co/Aguacate/Documentos/2018-04-30%20Cifras%20Sectoriales.pdf
  • Ramírez J, Castañeda D, Morales J. Alternativas microbiológicas para el manejo de Phytophthora cinnamomi Rands ., en Persea americana Mill. bajo condiciones de casa-malla management in Persea americana Mill. under greenhouse conditions. Cultivos Tropicales. 2014;35:19–11.
  • Minagricultura. (2021). Cadena productiva Aguacate. [accessed 23 01 15]. https://sioc.minagricultura.gov.co/Aguacate/Documentos/2021-03-31
  • Ramírez J. Avocado wilt complex disease, implications and management in Colombia Avocado wilt complex disease, implications and management in Colombia. Revista Facultad Nacional de Agronomía Medellín. 2018;71(2):8525–8541. doi:10.15446/rfna.v71n2.66465.
  • Tamayo P (2008). Generalidades del cultivo. In CORPOICA Tecnología para el Cultivo de Aguacate (p. 29). [accessed 2022 02 06]. http://conectarural.org/sitio/sites/default/files/documentos/tecnologacultivoaguacate.pdf
  • Toapanta-Gallegos DE, Morillo-Velastegui LE, Viera-Arroyo WF. Molecular diagnosis of Phytophthora cinnamomi associated with root rot in avocado producing areas of Ecuador. Corpoica Cienc Tecnol Agropecuaria Mosquera. 2017;18(2):2500–5308. doi:10.21930/rcta.vol18_num2_art:.
  • Park K, Kloepper JW, Ryu CM. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J Microbiol Biotechnol. 2008;18:1095–1100.
  • Sathiyabama M, Bernstein N, Anusuya S. Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Ind Crops Prod. 2016;89:87–94. doi:10.1016/j.indcrop.2016.05.007.
  • Johnson SN, Hartley SE, Ryalls JMW, Frew A, Hall CR. Targeted plant defense: silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores. Ecology. 2021;102(3). doi:10.1002/ecy.3250.
  • Singh S, Sahoo MR, Acharya GC, Jinger D, Nayak P. Silicon: a Potent Nutrient in Plant Defense Mechanisms Against Arthropods. Silicon. 2021. doi:10.1007/s12633-021-01427-3.
  • Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. Role of Silicon on Plant–Pathogen Interactions. Front Plant Sci. 2017;8(May):1–14. doi:10.3389/fpls.2017.00701.
  • Ahammed GJ, Yang Y. Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiol Biochem. 2021;165:200–206. doi:10.1016/j.plaphy.2021.05.031.
  • Tubana BS, Babu T, Datnoff LE. A review of silicon in soils and plants and its role in us agriculture: history and future perspectives. Soil Sci. 2016;181(9–10):393–411. doi:10.1097/SS.0000000000000179.
  • Bekker TF, Labuschagne N, Aveling T, Kaiser C, Regnier T. Accumulation of total phenolics due to silicon application in roots of avocado trees infected with Phytophthora cinnamomi. South African Avocado Growers’ Association Yearbook. 2007;30:57–64.
  • Whan JA, Dann EK, Aitken EAB. Effects of silicon treatment and inoculation with Fusarium oxysporum f. sp. vasinfectum on cellular defences in root tissues of two cotton cultivars. Ann Bot. 2016;118(2):219–226. doi:10.1093/aob/mcw095.
  • Rodríguez E (2015). Caracterización morfológica y evaluación de la resistencia de materiales criollos de aguacate Persea americana Mill. A la pudrición radical del aguacate Phytophthora cinnamomi Rands en el centro de investigación Palmira de CORPOICA. Universidad Nacional de Colombia.
  • Bernal Estrada JA (2016). Estudios ecofisiológicos en aguacate cv. Hass en diferentes ambientes como alternativa productiva en Colombia [Universidad Nacional de Colombia]. [accessed 2022 02 19]. http://www.bdigital.unal.edu.co/50844/
  • Bérnard C, Acket S, Rossez Y, Fernandez O, Berton T, Gibon Y, Cabasson C. Untargeted Analysis of Semipolar Compounds by LC-MS and Targeted Analysis of Fatty Acids by GC-MS/GC-FID: from Plant Cultivation to Extract Preparation. Plant Metabolomics. 2018;1778:101–124. doi:10.1007/978-1-4939-7819-9.
  • Lichtenthaler HK, Buschmann C. Chlorophylls and Carotenoids: measurement and Characterization by UV-VIS Spectroscopy. Curr Protoc Food Anal Chem. 2001;1(1):F4.3.1–F4.3.8. doi:10.1002/0471142913.faf0403s01.
  • Thangaraj P (2016). Pharmacological Assays of Plant- Based Natural Products. In: Rainsford KD, editor. Switzerland: Springer International. doi:10.1007/978-3-319-26811-8.
  • Alcântara MA, De, Polari LI, Lins B, Meireles BR, Eduardo DA, Lima A, De A, Cesar J. Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chem. 2018. doi:10.1016/j.foodchem.2018.09.133.
  • Abhayashree MS, Murali M, Thriveni MC, Sindhu GM, Amruthesh KN. Crude oligosaccharides mediated resistance and histo-chemical changes in Capsicum annuum against anthracnose disease caused by Colletotrichum capsici. Plant Biosyst. 2017;151(2):221–233. doi:10.1080/11263504.2016.1150361.
  • Sellamuthu PS, Sivakumar D, Soundy P, Korsten L. Essential oil vapours suppress the development of anthracnose and enhance defence related and antioxidant enzyme activities in avocado fruit. Postharvest Biol Technol. 2013;81:66–72. doi:10.1016/j.postharvbio.2013.02.007.
  • Jiang Y, Duan X, Joyce D, Zhang Z, Li J. Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chem. 2004;88(3):443–446. doi:10.1016/j.foodchem.2004.02.004.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. doi:10.1016/0003-2697(76).
  • Pande S, Murthy M. A Modified Micro-Bradford Procedure for Elimination of Interference from Sodium Dodecyl Sulfate, Other Detergents, and Lipids. Anal Biochem. 1994;220:424–426. doi:10.1006/abio.1994.1361.
  • Dallagnol LJ, Rodrigues FA, Pascholati SF, Fortunato AA. Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew. Plant Pathol. 2015;64:1085–1093. doi:10.1111/ppa.12346.
  • Dallagnol LJ, Rodrigues FA, Tanaka FAO, Amorim L, Camargo L. Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathol. 2012;61:323–330. doi:10.1111/j.1365-3059.2011.02518.x.
  • Lemes EM, MacKowiak CL, Blount A, Marois JJ, Wright DL, Coelho L, Datnoff LE. Effects of Silicon applications on soybean rust development under greenhouse and field conditions. Plant Dis. 2011;95(3):317–324. doi:10.1094/PDIS-07-10-0500.
  • Jukanti A. Polyphenol Oxidases (PPOs) in Plants. Singapore: Springer; 2017.
  • Londoño J. Antioxidantes: importancia biológica y métodos para medir su actividad. In: Desarrollo y Transversalidad Lasallista Investigación y Ciencia. Bogotá: Universidad de La Salle; 2012. p. 1129–1162.
  • Cruz M, Hernández Y, Rivas E. Mecanismos de resistencia de las plantas al ataque de patógenos y plagas. Temas de Ciencia y Tecnología. 2006;10:45–54.
  • Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant. 2008;134(2):324–333. doi:10.1111/j.1399-3054.2008.01140.x.
  • Liang YC, Sun WC, Si J, Römheld V. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in. Cucumis Sativus Plant Pathol. 2005;54:678–685. doi:10.1111/j.1365-3059.2005.01246.x.
  • Schurt DA, Cruz MFA, Nascimento KJT, Filippi MCC, Rodrigues FA. Silicon potentiates the activities of defense enzymes in the leaf sheaths of rice plants infected by Rhizoctonia solani. Tropical Plant Pathol. 2014;39(6):457–463. doi:10.1590/S1982-56762014000600007.
  • Quarta A, Mita G, Durante M, Arlorio M, Paolis AD. Plant Physiology and Biochemistry Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads. Plant Physiology et Biochemistry. 2013;68(1):52–60. doi:10.1016/j.plaphy.2013.03.020.
  • Song A, Xue G, Cui P, Fan F, Liu H, Yin C. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice. Nature Publishing Group. 2016;11(6):24640. doi:10.1038/srep24640.
  • Agathokleous E, Feng ZZ, Peñuelas J. Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants? Sci Total Environ. 2020;726:138637. doi:10.1016/j.scitotenv.2020.138637.
  • Al-aghabary K, Zhu Z, Shi Q. Influence of Silicon Supply on Chlorophyll Content, Chlorophyll Fluorescence, and Antioxidative Enzyme Activities in Tomato Plants Under Salt Stress. J Plant Nutr. 2004;27(12):2101–2115. doi:10.1081/pln-200034641.
  • Bekker T, Labuschagne N, Kaiser C. Effects of soluble silicon against Phytophthora cinnamomi root rot of avocado (Persea americana Mill .) nursery plants. South African Avocado Growers´Association Yearbook. 2005;28:6064.
  • Ramírez-Gil JG, Castañeda-Sánchez DA, Morales-Osorio JG. Production of avocado trees infected with Phytophthora cinnamomi under different management regimes. Plant Pathol. 2017;66(4):623–632. doi:10.1111/ppa.12620.
  • Pérez-Bueno ML, Pineda M, Barón M. Phenotyping Plant Responses to Biotic Stress by Chlorophyll Fluorescence Imaging. Front Plant Sci. 2019;10(September):1–15. doi:10.3389/fpls.2019.01135.
  • Yasar F, Ellialtioglu S, Yildiz K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Physiol. 2008;55(6):782–786. doi:10.1134/S1021443708060071.
  • Zhang J, Coaker G, Zhou JM, Dong X. Plant Immune Mechanisms: from Reductionistic to Holistic Points of View. Mol Plant. 2020;13(10):1358–1378. doi:10.1016/j.molp.2020.09.007.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J Botany. 2012;(2012:1–26. doi:10.1155/2012/217037.
  • Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol. 2010;11(5):705–719. doi:10.1111/j.1364-3703.2010.00625.x.
  • Kulbat K. The role of phenolic compounds in plant stress responses. Biotechnol Food Sci. 2016;80(2):97–108. doi:10.1201/9781351074186.
  • Barros J, Serrani-Yarce JC, Chen F, Baxter D, Venables BJ, Dixon RA. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nature Plants. 2016;2(6):1–9. doi:10.1038/NPLANTS.2016.50.
  • Mandal S, Mitra A. Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol Mol Plant Pathol. 2007;71(4–6):201–209. doi:10.1016/j.pmpp.2008.02.003.
  • Hammerschmidt R. Phenols and plant-pathogen interactions: the saga continues. Physiol Mol Plant Pathol. 2005;66(3):77–78. doi:10.1016/j.pmpp.2005.08.001.
  • Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS. Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol. 2008;121(3):267–280. doi:10.1007/s10658-008-9302-5.
  • Zurbriggen MD, Carrillo N, Hajirezaei MR. ROS signaling in the hypersensitive response: when, where and what for? Plant Signal Behav. 2010;5(4):393–396. doi:10.4161/psb.5.4.10793.
  • Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant. 2008;133(3):481–489. doi:10.1111/j.1399-3054.2008.01090.x.
  • Ali M, Cheng Z, Ahmad H, Hayat S. Reactive oxygen species (ROS) as defenses against a broad range of plant fungal infections and case study on ros employed by crops against Verticillium dahlia wilts. J Plant Interact. 2018;13(1):353–363. doi:10.1080/17429145.2018.1484188.
  • Andrade-Hoyos P, Molina Gayosso E, De León C, Espíndola Barquera M, Alvarado Rosales D, López Jiménez A. Mecanismos de defensa en portainjertos de aguacate ante Phytophthora cinnamomi Rands. Revista Mexicana de Ciencias Agrícolas. 2015;6(2):347–360. doi:10.29312/remexca.v6i2.693.
  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol Biochem. 2013;72:1–20. doi:10.1016/j.plaphy.2013.05.009.
  • Anderson J, Pegg K, Dann E, Cooke A, Smith L, Willingham S, Giblin F, Dean J, Coates L. New strategies for the integrated control of avocado fruit diseases. New Zaealand and AUSTRALIA Avocado Grower´s Conference´05, September, Tauranga, New Zealand; 2005. p. 1–6.
  • Kaluwa K, Bertling I, Bower JP, Tesfay SZ. Silicon application effects on ‘ Hass ’ avocado fruit physiology. In: University of KwaZulu-Natal. SOUTH AFRICAN AVOCADO GROWERS’ ASSOCIATION YEARBOOK. Pietermaritzburg, South Africa: South African Avocado Growers Association; 2010. p. 44–47.
  • Bekker T, Labuschagne N, Aveling T, Regnier T, Kaiser C. Effects of soil drenching of water-soluble potassium silicate on commercial avocado (Persea americana Mill.) orchard trees infected with Phytophthora cinnamomi Rands on root density, canopy health, induction and concentration of phenolic compounds. S Afr J Plant Soil. 2014;31(2):101–107. doi:10.1080/02571862.2014.912687.
  • Fauteux F, Rémus-Borel W, Menzies J, Bélanger R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett. 2005;249:1–6. doi:10.1016/j.femsle.2005.06.034.
  • Van Bockhaven J, Strnad M, Asano T, Kikuchi S, Monica H, Vleesschauwer DD. Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol. 2015;206:761–773.
  • Campbell MM, Sederoff RR. Variation in lignin content and composition. Plant Physiol. 1996;110(1):3–13. doi:10.1104/pp.110.1.3.
  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA. Class III peroxidases in plant defence reactions. J Exp Bot. 2009;60(2):377–390. doi:10.1093/jxb/ern277.
  • Boeckx T, Webster R, Winters AL, Webb KJ, Gay A, Kingston-smith AH. Polyphenol oxidase-mediated protection against oxidative stress is not associated with enhanced photosynthetic efficiency. Ann Bot. 2015;116:529–540. doi:10.1093/aob/mcv081.
  • Cantos E, Espín JC, Tomás-Barberán FA. Effect of wounding on phenolic enzymes in six minimally processed lettuce cultivars upon storage. J Agric Food Chem. 2001;49(1):322–330. doi:10.1021/jf000644q.
  • Cantos E, Tudela JA, Gil MI, Espín JC. Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J Agric Food Chem. 2002;50(10):3015–3023. doi:10.1021/jf0116350.
  • Rahman A, Wallis C, Uddin W. Silicon induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology. 2015;105:748–752.
  • Pozza EA, Aziz A, Pozza A, Botelho S. Silicon in plant disease control. Revista Ceres. 2015;62:323–331.
  • Viviancos J, Labbé C, Menzies J, Bélanger R. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the SA-dependent defense pathway. Mol Plant Pathol. 2015;16:572–582. doi:10.1111/mpp.12213.
  • Zhang J, Zhang X, Ye M, Li X, Lin S, Sun X. The Jasmonic Acid Pathway Positively Regulates the Polyphenol Oxidase-Based Defense against Tea Geometrid Caterpillars in the Tea Plant (Camellia sinensis). J Chem Ecol. 2020;2:1–9.
  • Dong J, Wan G, Liang Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol. 2010;148(2–3):99–104. doi:10.1016/j.jbiotec.2010.05.009.
  • Kim DS, Hwang BK. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot. 2014;65(9):2295–2306. doi:10.1093/jxb/eru109.
  • Fernandes C, Moraes V, Vasconcelos I, Silveira J, Oliveira J. Induction of an anionic peroxidase in Cowpea leaves by exogenous salicylic acid. J Plant Physiol. 2006;163:1040–1048. doi:10.1016/j.jplph.2005.06.021.
  • Martinez C, Baccou J, Bresson E, Baissac Y, Montillet J, Geiger J, Assigbetsé K, Nicole M. Salicylic Acid Mediated by the Oxidative Burst Is a Key Molecule in Local and Systemic Responses of Cotton Challenged by an Avirulent Race of Xanthomonas campestris pv. Malvacearum Plant Physiol. 2000;122(3):757–766. doi:10.1104/pp.122.3.757.
  • Hiraga S, Ito H, Yamakawa H, Ohtsubo N, Seo S, Mitsuhara I, Matsui H, Honma M, Ohashi Y. An HR-Induced Tobacco Peroxidase Gene Is Responsive to Spermine, but Not to Salicylate, Methyl Jasmonate, and Ethephon. Mol Plant Microbe. 2000;13(2):210–216. doi:10.1094/MPMI.2000.13.2.210.
  • Ali M, Yu K-W, Hahn E-J, Paek K-Y. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep. 2006;25:613–620. doi:10.1007/s00299-005-0065-6.
  • Kumari G, Reddy A, Naik S, Kumar S, Prasanthi J, Sriranganayakulu G, Reddy P, Sudhakar C. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biologia Plantarum. 2006;50(2):219–226. doi:10.1007/s10535-006-0010-8.
  • Repka V, Fischerová I, Šilhárová K. Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures. Biologia Plantarum. 2004;48:273–283.
  • Chittoor J, Leach J, White F. Induction of Peroxidase During Defense Against Pathogens. In: Muthukrishnan E, editor. PATHOGENESIS-RELATED PROTEINS. United States: CRC Press LLC; 1999. p. 177.
  • Keren-Keiserman A, Tanami Z, Shoseyov O, Ginzberg I. Peroxidase activity associated with suberization processes of the muskmelon (Cucumis melo) rind. Physiol Plant. 2004;121(119):141–148. doi:10.1111/j.0031-9317.2004.00301.x.
  • Bernards MA, Summerhurst DK, Razem FA. Oxidases, peroxidases and hydrogen peroxide: the suberin connection. Phytochemistry Rev. 2004;2(3):113–126. doi:10.1023/B:PHYT.0000047810.10706.46.
  • Sousa ACG, Souza BHS, Marchiori PER, Bôas LVV. Characterization of priming, induced resistance, and tolerance to Spodoptera frugiperda by silicon fertilization in maize genotypes. J Pest Sci. 2022;95(3):1387–1400. doi:10.1007/s10340-021-01468-y.
  • Jaiti F, Luc J, El I. Physiological and Molecular Plant Pathology Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. Albedinis Physiol Mol Plant Pathol. 2009;74(1):84–90. doi:10.1016/j.pmpp.2009.09.005.
  • Fortunato AA, Rodrigues FÁ, Do Nascimento KJT. Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology. 2012;102(10):957–966. doi:10.1094/PHYTO-02-12-0037-R.
  • Silva RV, Oliveira RDL, Nascimento KJT, Rodrigues FA. Biochemical responses of coffee resistance against Meloidogyne exigua mediated by silicon. Plant Pathol. 2010;59(3):586–593. doi:10.1111/j.1365-3059.2009.02228.x.
  • Rodrigues FA, Datnoff LE, Universidade Federal de Viçosa. Silicon and plant diseases. In: Silicon and Plant Diseases. Springer Cham: Springer; 2015. p. 21. doi:10.1007/978-3-319-22930-0.