1,924
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

GIGANTEA-ENHANCED EM LEVEL complex initiates drought escape response via dual function of ABA synthesis and flowering promotion

, , , , & ORCID Icon
Article: 2180056 | Received 27 Jan 2023, Accepted 09 Feb 2023, Published online: 22 Feb 2023

References

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011;11(1):163. doi:10.1186/1471-2229-11-163.
  • Ali A, Kim JK, Jan M, Khan HA, Khan IU, Shen M, Park J, Lim CJ, Hussain S, Baek D, et al. Rheostatic control of ABA signaling through HOS15-mediated OST1 degradation. Mol Plant. 2019;12(11):1447–5. doi:10.1016/j.molp.2019.08.005.
  • Blair EJ, Bonnot T, Hummel M, Hay E, Marzolino JM, Quijada IA, Nagel DH. Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci Rep. 2019;9(1):4814. doi:10.1038/s41598-019-41234-w.
  • Cha JY, Kim J, Jeong SY, Shin G-I, Ji MG, Hwang J-W, Khaleda L, Liao X, Ahn G, Park H-J, et al. The Na+/H+antiporter SALT OVERLY SENSITIVE 1 regulates salt compensation of circadian rhythms by stabilizing GIGANTEA in Arabidopsis. Proc Natl Acad Sci U S A. 2022;119(33):e2207275119. doi:10.1073/pnas.2207275119.
  • Kim JA, Kim HS, Choi SH, Jang JY, Jeong MJ, Lee SI. The importance of the circadian clock in regulating plant metabolism. Int J Mol Sci. 2017;18(12): 2680. doi:10.3390/ijms18122680.
  • Phan KAT, Paeng SK, Chae HB, Park JH, Lee ES, Wi SD, Bae SB, Kim MG, Yun D-J, Kim W-Y, et al. Universal stress protein regulates the circadian rhythm of central oscillator genes in Arabidopsis. FEBS Lett. 2022;596(15):1871–1880. doi:10.1002/1873-3468.14410.
  • Seo PJ, Mas P. STRESSing the role of the plant circadian clock. Trends Plant Sci. 2015;20(4):230–237. doi:10.1016/j.tplants.2015.01.001.
  • Adams S, Grundy J, Veflingstad SR, Dyer NP, Hannah MA, Ott S, Carré IA. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. New Phytol. 2018;220(3):893–907. doi:10.1111/nph.15415.
  • Covington MF, Harmer SL, Weigel D. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol. 2007;5(8):e222. doi:10.1371/journal.pbio.0050222.
  • Nitschke S, Cortleven A, Iven T, Feussner I, Havaux M, Riefler M, Schmülling T. Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants. Plant Cell. 2016;28(7):1616–1639. doi:10.1105/tpc.16.00016.
  • Chen K, Li G-J, Bressan RA, Song C-P, Zhu J-K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2020;62(1):25–54. doi:10.1111/jipb.12899.
  • Seung D, Risopatron JPM, Jones BJ, Marc J. Circadian clock-dependent gating in ABA signalling networks. Protoplasma. 2012;249(3):445–457. doi:10.1007/s00709-011-0304-3.
  • Baek D, Kim W-Y, Cha J-Y, Park HJ, Shin G, Park J, Lim CJ, Chun HJ, Li N, Kim DH, et al. The GIGANTEA-ENHANCED EM LEVEL complex enhances drought tolerance via regulation of abscisic acid synthesis. Plant Physiol. 2020;184(1):443–458. doi:10.1104/pp.20.00779.
  • Liu T, Carlsson J, Takeuchi T, Newton L, Farré EM. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant J. 2013;76(1):101–114. doi:10.1111/tpj.12276.
  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 2003;35(1):44–56. doi:10.1046/j.1365-313x.2003.01786.x.
  • Cao S, Jiang S, Zhang R. The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul. 2006;48(3):261–270. doi:10.1007/s10725-006-0012-8.
  • Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, et al. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun. 2013;4:1352. doi:10.1038/ncomms2357.
  • Cha JY, Kim J, Kim T-S, Zeng Q, Wang L, Lee SY, Kim W-Y, Somers DE. GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock. Nat Commun. 2017;8(1):3. doi:10.1038/s41467-016-0014-9.
  • Ito S, Song YH, Imaizumi T. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant. 2012;5(3):573–582. doi:10.1093/mp/sss013.
  • Kubota A, Ito S, Shim JS, Johnson RS, Song YH, Breton G, Goralogia GS, Kwon MS, Laboy Cintrón D, Koyama T, et al. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genet. 2017;13(6):e1006856. doi:10.1371/journal.pgen.1006856.
  • Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science. 2012;336(6084):1045–1049. doi:10.1126/science.1219644.
  • Hwang DY, Park S, Lee S, Lee SS, Imaizumi T, Song YH. GIGANTEA regulates the timing stabilization of CONSTANS by altering the interaction between FKF1 and ZEITLUPE. Mol Cells. 2019;42(10):693–701. doi:10.14348/molcells.2019.0199.
  • Kim WY, Fujiwara S, Suh -S-S, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE, et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature. 2007;449(7160):356–360. doi:10.1038/nature06132.
  • Jose J, Bánfalvi Z. The role of GIGANTEA in flowering and abiotic stress adaptation in plants. COLUMELLA – J Agri Environ Sci. 2019;6(1):7–18. doi:10.18380/SZIE.COLUM.2019.6.1.7.
  • Abdul-Awal SM, Chen J, Xin Z, Harmon FG. A sorghum gigantea mutant attenuates florigen gene expression and delays flowering time. Plant Direct. 2020;4(11):e00281. doi:10.1002/pld3.281.
  • Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot. 2013;64(2):675–684. doi:10.1093/jxb/ers361.
  • Riboni M, Galbiati M, Tonelli C, Conti L. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol. 2013;162(3):1706–1719. doi:10.1104/pp.113.217729.
  • Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, de Groot S, Soole K, Langridge P. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci. 2017;8:1950. doi:10.3389/fpls.2017.01950.
  • Siemiatkowska B, Chiara M, Badiger BG, Riboni M, D'Avila F, Braga D, Salem MAA, Martignago D, Colanero S, Galbiati M, et al. GIGANTEA is a negative regulator of abscisic acid transcriptional responses and sensitivity in Arabidopsis. Plant Cell Physiol. 2022;63(9):1285–1297. doi:10.1093/pcp/pcac102.
  • Bensmihen S, Giraudat J, Parcy F. Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot. 2005;56(412):597–603. doi:10.1093/jxb/eri050.
  • Kim SY, Ma J, Perret P, Li Z, Thomas TL. Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol. 2002;130(2):688–697. doi:10.1104/pp.003566.
  • Rivin CJ, Grudt T. Abscisic Acid and the developmental regulation of embryo storage proteins in maize. Plant Physiol. 1991;95(2):358–365. doi:10.1104/pp.95.2.358.
  • Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L. ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot. 2016;67(22):6309–6322. doi:10.1093/jxb/erw384.
  • Zhao Y, Zhang Z, Gao J, Wang P, Hu T, Wang Z, Hou Y-J, Wan Y, Liu W, Xie S, et al. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Rep. 2018;23(11):3340–3351 e5. doi:10.1016/j.celrep.2018.05.044.
  • Singh A, Jha SK, Bagri J, Pandey GK. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS One. 2015;10(4):e0125168. doi:10.1371/journal.pone.0125168.
  • Baek D, Shin G, Kim MC, Shen M, Lee SY, Yun D-J. Histone deacetylase HDA9 with ABI4 contributes to abscisic acid homeostasis in drought stress response. Front Plant Sci. 2020;11:143. doi:10.3389/fpls.2020.00143.
  • Verslues PE, Bray EA. Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot. 2006;57(1):201–212. doi:10.1093/jxb/erj026.
  • Maia J, Dekkers BJW, Dolle MJ, Ligterink W, Hilhorst HWM. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated A rabidopsis seeds. New Phytol. 2014;203(1):81–93. doi:10.1111/nph.12785.
  • Ali A, Pardo JM, Yun DJ. Desensitization of ABA-signaling: the swing from activation to degradation. Front Plant Sci. 2020;11:379. doi:10.3389/fpls.2020.00379.
  • Shu K, Luo X, Meng Y, Yang W. Toward a molecular understanding of abscisic acid actions in floral transition. Plant Cell Physiol. 2018;59(2):215–221. doi:10.1093/pcp/pcy007.