1,214
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Effect of light conditions on trophic level and gene expression of partially mycoheterotrophic orchid, Cymbidium goeringii

, &
Article: 2180159 | Received 30 Nov 2022, Accepted 09 Feb 2023, Published online: 19 Feb 2023

References

  • Merckx VSFT, Freudenstein JV, Kissling J, Christenhusz MJM, Stotler RE, Crandall-Stotler B, Wickett N, Rudall PJ, van de Kamer HM, Maas PJM. Taxonomy and classification. In: Merckx VSFT, editor. Mycoheterotrophy: the biology of plants living on fungi. New York (NY): Springer; 2013a. p. 19–8.
  • Merckx VSFT, Mennes CB, Peay KG, Geml J. Evolution and diversification. In: Merckx VSFT, editor. Mycoheterotrophy: the biology of plants living on fungi. New York (NY): Springer; 2013b. p. 215–244.
  • Selosse MA, Roy M. Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci. 2009;14(2):64–70. doi:10.1016/j.tplants.2008.11.004.
  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc B. 2004;271:1799–1806. doi:10.1098/rspb.2004.2807.
  • Leake JR. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 1994;127:171–216. doi:10.1111/j.1469-8137.1994.tb04272.x.
  • Suetsugu K. (2015). Autonomous self-pollination and insect visitors in partially and fully mycoheterotrophic species of Cymbidium (Orchidaceae). J Plant Res, 128(1), 115–125. 10.1007/s10265-014-0669-4
  • Jąkalski M, Minasiewicz J, Caius J, May M, Selosse MA, Delannoy E. The genomic impact of mycoheterotrophy in orchids. Front Plant Sci. 2021;12:632033. doi:10.3389/fpls.2021.632033.
  • PR T, Cf B, AP N, EK W, Ayyampalayam S, JR M, Yukawa T, Tj G, Sw G, JC P, et al. Phylotranscriptomic analyses of mycoheterotrophic monocots show a continuum of convergent evolutionary changes in expressed nuclear genes from three independent nonphotosynthetic lineages. Genome Biol Evol 2022;evac183. https://doi.org/10.1093/gbe/evac183.
  • Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse MA. Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytologist. 2005;166(2):639–653. doi:10.1111/j.1469-8137.2005.01364.x.
  • Roy M, Gonneau C, Rocheteau A, Berveiller D, Thomas JC, Damesin C, Selosse MA. Why do mixotrophic plants stay green? A comparison between green and achlorophyllous orchid individuals in situ. Ecol Monogr. 2013;83:95–117.
  • Suetsugu K, Yamato M, Miura C, Yamaguchi K, Takahashi K, Ida Y, Shigenobu S and Kaminaka H. (2017). Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Mol Ecol, 26(6), 1652–1669. 10.1111/mec.14021
  • Lallemand F, Martin‐Magniette ML, Gilard F, Gakière B, Launay‐Avon A, É D, Selosse MA. In situ transcriptomic and metabolomic study of the loss of photosynthesis in the leaves of mixotrophic plants exploiting fungi. Plant J. 2019;98(5):826–841. doi:10.1111/tpj.14276.
  • Miura C, Yamaguchi K, Miyahara R, Yamamoto T, Fuj M, Yagame T, Imaizumi-Anraku H, Yamato M, Shigenobu S, Kaminaka H. The mycoheterotrophic symbiosis between orchids and mycorrhizal fungi possesses major components shared with mutualistic plant-mycorrhizal symbioses. Molecular Plant-Microbe Interactions. 2018;31(10):1032–1047. doi:10.1094/MPMI-01-18-0029-R.
  • Dearnaley J, Perotto S, Selosse MA. Structure and development of orchid mycorrhizas. In: Martin F, editor. Molecular mycorrhizal symbiosis. New Jersey (NJ) (Hoboken): Wiley-Blackwell; 2016. p. 63–86.
  • Gonneau C, Jersáková J, de Tredern E, Till‐Bottraud I, Saarinen K, Sauve M, Roy M, Hájek T, Selosse MA. Photosynthesis in perennial mixotrophic Epipactis spp. (Orchidaceae) Contributes More to Shoot and Fruit Biomass than to Hypogeous Survival Journal of Ecology. 2014;102:1183–1194.
  • Matsuda Y, Shimizu S, Mori M, Ito SI, Selosse MA. Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments. Am J Bot. 2012;99(7):1177–1188. doi:10.3732/ajb.1100546.
  • Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G. 15N and 13C natural abundance of two mycoheterotrophic and putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol. 2010;188:590–596. doi:10.1111/j.1469-8137.2010.03365.x.
  • Preiss K, Adam IK, Gebauer G. Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc Biol Sci. 2010;277(1686):1333–1336. doi:10.1098/rspb.2009.1966.
  • Motomura H, Selosse M, Martos F, Kagawa A and Yukawa T. (2010). Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Annals of Botany, 106(4), 573–581. 10.1093/aob/mcq156
  • Akiyama K, Hayashi H. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot. 2006;97(6):925–931. doi:10.1093/aob/mcl063.
  • Hanlon MT, Coenen C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytologist. 2011;189(3):701–709. doi:10.1111/j.1469-8137.2010.03567.x.
  • Hause B, Schaarschmidt S. The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry. 2009;70:1589–1599. doi:10.1016/j.phytochem.2009.07.003.
  • Takeda N, Handa Y, Tsuzuki D, Kojima M, Sakakibara H, Kawaguchi M. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. Plant Physiol. 2015;167(2):545–557. doi:10.1104/pp.114.247700.
  • Hedden P, Thomas SG. Gibberellin biosynthesis and its regulation. Biochem J. 2012;444:11–25. doi:10.1042/BJ20120245.
  • Yuan Y, Jin X, Liu J, Zhao X, Zhou J, Wang X, Wang D, Lai C, Xu W, Huang J, et al. The gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat Commun. 2018;9(1):1615. doi:10.1038/s41467-018-03423-5.
  • Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ, et al. The Apostasia genome and the evolution of orchids. Nature. 2017;549(7672):379–383. doi:10.1038/nature23897.
  • Nagata M, Yamamoto N, Shigeyama T, Terasawa Y, Anai T, Sakai T, Inada S, Arma S, Hashiguchi M, Akashi R, et al. Red/far red light controls arbuscular mycorrhizal colonization via jasmonic acid and strigolactone signaling. Plant Cell Physiol. 2015;56(11):2100–2109. doi:10.1093/pcp/pcv135.
  • Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant. 2013;6:76–87. doi:10.1093/mp/sss115.
  • Ruizdw-Lozano JM, Aroca R, Ám Z, Molina S, Andreo‐Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ. 2016;39:441–452. doi:10.1111/pce.12631.
  • Kobayashi K, Suetsugu K, Wada H. The leafless orchid Cymbidium macrorhizon performs photosynthesis in the pericarp during the fruiting season. Plant Cell Physiol. 2021;62:472–481. doi:10.1093/pcp/pcab006.
  • Ogura-Tsujita Y, Yokoyama J, Miyoshi K, Yukawa T. Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). Am J Bot. 2012;99(7):1158–1176. doi:10.3732/ajb.1100464.
  • Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, Figura T, Bourceret A, Jacquemyn H, Li T, Gao J, et al. The waiting room hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? Ann Bot. 2022;129(3):259–270. doi:10.1093/aob/mcab134.
  • Gomes SIF, Merckx VSFT, Kehl J, Gebauer G, Mommer L. Mycoheterotrophic plants living on arbuscular mycorrhizal fungi are generally enriched in 13 C, 15 N and 2 H isotopes. J Ecol. 2020;108:1250–1261. doi:10.1111/1365-274513381.
  • Gebauer G, Meyer M. 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist. 2013;160:209–223. doi:10.1046/j.1469-8137.2003.00872.x.
  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot. 2011;98(7):1148–1163. doi:10.3732/ajb.1000486.
  • Liebel HT, Bidartondo MI, Gebauer G. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance? Ann Bot. 2015;115(2):251–261. doi:10.1093/aob/mcu240.
  • Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. doi:10.18637/jss.v067.i01.
  • Core Team R. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2021.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30 15 . 2014;2114–2120.
  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652. doi:10.1038/nbt.1883.
  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi:10.1186/1471-2105-12-323.
  • Li MH, Liu KW, Li Z, Lu HC, Ye QL, Zhang D, Wang JY, Li YF, Zhong ZM, Liu X, et al. Genomes of leafy and leafless platanthera orchids illuminate the evolution of mycoheterotrophy. Nature Plants. 2022;8(4):373–388. doi:10.1038/s41477-022-01127-9.
  • Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang L. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil. 2015;396(1):1–26. doi:10.1007/s11104-015-2542-1.
  • Damesin C, Lelarge C. Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell Environ. 2003;26:207–219. doi:10.1046/j.1365-3040.2003.00951.x.
  • Farquhar GD, Richards RA. Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Aust J Plant Physiol. 1984;11:539–552.
  • Du Puy D, Cribb PJ. The genus Cymbidium. Richmond (UK): Royal Botanic Gardens, Kew; 2007.
  • León J, Sánchez-Serrano JJ. Molecular biology of jasmonic acid biosynthesis in plants. Plant Physiology and Biochemistry. 1999;37(5):373–380. doi:10.1016/S0981-9428(99)80043-6.
  • SMITH H and WHITELAM G C. (1997). The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ, 20(6), 840–844. 10.1046/j.1365-3040.1997.d01-104.x
  • Campos ML, Kang JH, Howe GA. Jasmonate-triggered plant immunity. J Chem Ecol. 2014;40:657–675. doi:10.1007/s10886-014-0468-3.
  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP. Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ. 2018;41(10):2227–2243. doi:10.1111/pce.13364.
  • Beyrle HF, Smith SE, Franco CMM, Peterson RL. Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses. Canadian J Bot. 1995;73(8):1128–1140. doi:10.1139/b95-123.
  • Ryan CA, Moura DS. Systemic wound signaling in plants: a new perception. Proc. Natl. Acad. Sci. USA 2002;99:6519–6520. doi:10.1073/pnas.112196499.