1,278
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Does zaxinone counteract strigolactones in shaping rice architecture?

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2184127 | Received 15 Dec 2022, Accepted 20 Feb 2023, Published online: 28 Feb 2023

References

  • Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol. 2015;66:161–4. doi:10.1146/annurev-arplant-043014-114759.
  • Wang JY, Lin P-Y, Al-Babili S, et al. (2021a). On the biosynthesis and evolution of apocarotenoid plant growth regulators. Seminars in Cell and Developmental Biolology 109, 3–11. doi: 10.1016/j.semcdb.2020.07.007
  • Yoneyama K, Xie X, Yoneyama K, Kisugi T, Nomura T, Nakatani Y, Akiyama K, McErlean CSP. Which Are the Major Players, Canonical or Non-Canonical Strigolactones? J Exp Bot. 2018;69(9):2231–2239. https://doi.org/10.1093/jxb/ery090.
  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S, et al. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science. 2012;335(6074):1348–1351. doi:10.1126/science.1218094.
  • Abuauf H, Haider I, Jia K-P, Ablazov A, Mi J, Blilou I, Al-Babili S. The arabidopsis DWARF27 gene encodes an all-trans-/9-cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Science. 2018;277:33–42. doi:10.1016/j.plantsci.2018.06.024.
  • Bruno M, et al. On the substrate-and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett. 2014;588:1802–1807. doi:10.1016/j.febslet.2014.03.041.
  • Bruno M, et al. Insights into the formation of carlactone from in-depth analysis of the CCD 8-catalyzed reactions. FEBS Lett. 2017;591:792–800. doi:10.1002/1873-3468.12593.
  • Chen G-TE, et al. 9‑cis‑β‑Apo‑10ʹ‑carotenal is the precursor of strigolactones in planta. Planta. 2022;256:88. doi:10.1007/s00425-022-03999-9.
  • Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol. 2014;10(12):1028–1033. doi:10.1038/nchembio.1660.
  • Umehara M, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455. 2008;195-200.e 10:1186.
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, et al. Strigolactone inhibition of shoot branching. Nature. 2008;455(7210):189–194. doi:10.1038/nature07271.
  • Ito S, Braguy J, Wang JY, Yoda A, Fiorilli V, Takahashi I, Jamil M, Felemban A, Miyazaki S, Mazzarella T, et al. Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice. Science Advances. 2022;8(44):eadd1278. doi:10.1126/sciadv.add1278.
  • Wakabayashi T, et al. Direct Conversion of Carlactonoic Acid to Orobanchol by Cytochrome P450 CYP722C in Strigolactone Biosynthesis. Science Advances 5 (12): eaax9067. 2019. doi:10.1126/sciadv.aax9067.
  • Akiyama K, Matsuzaki K-I, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435(7043):824–827. doi:10.1038/nature03608.
  • Lanfranco L, Fiorilli V, Venice F, Bonfante P. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot. 2018;69(9):2175–2188. doi:10.1093/jxb/erx432.
  • Fiorilli V, Wang JY, Bonfante P, Lanfranco L, Al-Babili S. Apocarotenoids: old and new mediators of the arbuscular mycorrhizal symbiosis. Front Plant Sci. 2019;10:1186. doi:10.3389/fpls.2019.01186.
  • Wang JY, Haider I, Jamil M, Fiorilli V, Saito Y, et al. The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat Commun. 2019;10:810. doi:10.1038/s41467-019-08461-1.
  • Ablazov A, Mi J, Jamil M, Jia K-P, Wang JY, Feng Q, Al-Babili S. The Apocarotenoid Zaxinone Is a Positive Regulator of Strigolactone and Abscisic Acid Biosynthesis in Arabidopsis Roots. Front Plant Sci. 2020;11:578. doi:10.3389/fpls.2020.00578.
  • Ablazov A, Votta C, Fiorilli V, Wang JY, Aljedaani F, Jamil M, Balakrishna A, Balestrini R, Liew KX, Rajan C, et al. ZAXINONE SYNTHASE 2 regulates growth and arbuscular mycorrhizal symbiosis in rice. Plant Physiol. 2023;191(1):382–399. doi:10.1093/plphys/kiac472.
  • Wang JY, Braguy J, Chen GTE, Jamil M, Balakrishna A, Berqdar L, Al-Babili S. Perspectives on the metabolism of strigolactone rhizospheric signals. Front Plant Sci. 2022a;13:1062107. doi:10.3389/fpls.2022.1062107.
  • Wang JY, Jamil M, Lin P-Y, Ota T, Fiorilli V, Novero M, Zarban RA, Kountche BA, Takahashi I, Martínez C, et al. Efficient mimics for elucidating zaxinone biology and promoting agricultural applications. Mol Plant. 2020;13(11):1654–1661. doi:10.1016/j.molp.2020.08.009.
  • Carbonnel S, Torabi S, Gutjahr C. MAX2 -independent transcriptional responses to rac- GR24 in Lotus japonicus roots. Plant Signal Behav. 2021;16:1. doi:10.1080/15592324.2020.1840852.
  • Wang JY, Alseekh S, Xiao T, Ablazov A, Perez de Souza L, Fiorilli V, Anggarani M, Lin P-Y, Votta C, Novero M, et al. Multi-omics approaches explain the growth-promoting effect of the apocarotenoid growth regulator zaxinone in rice. Communications Biology. 2021b;4(1):1222. doi:10.1038/s42003-021-02740-8.
  • Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol. 2018;18(1):1–9. doi:10.1186/s12870-018-1387-1.
  • Wang JY, Chen GTE, Jamil M, Braguy J, Sioud S, Liew KX, Balakrishna A, Al-Babili S. Protocol for characterizing strigolactones released by plant roots. STAR Protocols. 2022b;3(2):101352. doi:10.1016/j.xpro.2022.101352.
  • Proost S, Krawczyk A, Mutwil M. LSTrAP: efficiently combining RNA sequencing data into co-expression networks. BMC Bioinform. 2017;18(1):444. doi:10.1186/s12859-017-1861-z.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi:10.1186/s13059-014-0550-8.