1,142
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Aberrant light sensing and motility in the green alga Chlamydomonas priscuii from the ice-covered Antarctic Lake Bonney

, , , & ORCID Icon
Article: 2184588 | Received 29 Jun 2022, Accepted 20 Feb 2023, Published online: 08 Mar 2023

References

  • Böhm M, Kreimer G. Orient in the World with a single eye: the Green Algal Eyespot and phototaxis. In: Cánovas FM, Lüttge U, Risueño M-C, Pretzsch H editors. Progress in Botany. Progress in Botany. Vol. 82. Cham, Switzerland: Springer International Publishing; 2020. p. 259–10.
  • Ueki N, Ide T, Mochiji S, Kobayashi Y, Tokutsu R, Ohnishi N, Yamaguchi K, Shigenobu S, Tanaka K, Minagawa J, . 2016. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. 113: 5299–5304.
  • Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T, Mittag M. A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle. Plant Physiology. 2017;174(1):185–201. doi:10.1104/pp.17.00349.
  • Petroutsos D, Tokutsu R, Maruyama S, Flori S, Greiner A, Magneschi L, Cusant L, Kottke T, Mittag M, Hegemann P, et al. A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature. 2016;537(7621):563–566. doi:10.1038/nature19358.
  • Rredhi A, Petersen J, Schubert M, Li W, Oldemeyer S, Li W, Westermann M, Wagner V, Kottke T, Mittag M. DASH cryptochrome 1, a UV-A receptor, balances the photosynthetic machinery of Chlamydomonas reinhardtii. New Phytologist. 2021;232(2):610–624. doi:10.1111/nph.17603.
  • Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G. Phototropin Influence on Eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii. The Plant Cell. 2012;24(11):4687–4702. doi:10.1105/tpc.112.103523.
  • Cvetkovska M, Zhang X, Vakulenko G, Benzaquen S, Szyszka-Mroz B, Malczewski N, Smith DR, Hüner NPA. A constitutive stress response is a result of low temperature growth in the Antarctic green alga Chlamydomonas sp. UWO241. Plant, Cell & Environment. 2022;45(1):156–177. doi:10.1111/pce.14203.
  • Gavelis GS, Keeling PJ, Leander BS. How exaptations facilitated photosensory evolution: seeing the light by accident. BioEssays. 2017;39(7):1600266. doi:10.1002/bies.201600266.
  • Jékely G. Evolution of phototaxis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1531):2795–2808. doi:10.1098/rstb.2009.0072.
  • Kianianmomeni A, Hallmann A. Algal photoreceptors: in vivo functions and potential applications. Planta. 2014;239(1):1–26. doi:10.1007/s00425-013-1962-5.
  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews. 2006;70(1):222–252. doi:10.1128/MMBR.70.1.222-252.2006.
  • Patriarche JD, Priscu JC, Takacs-Vesbach C, Winslow L, Myers KF, Buelow H, Morgan-Kiss RM, Doran PT. Year-round and Long-Term Phytoplankton dynamics in Lake Bonney, a permanently ice-covered Antarctic Lake. Journal of Geophysical Research: Biogeosciences. 2021;126:e2020JG005925.
  • Stahl-Rommel S, Kalra I, D’Silva S, Hahn MM, Popson D, Cvetkovska M, Morgan-Kiss RM. Cyclic electron flow (CEF) and ascorbate pathway activity provide constitutive photoprotection for the photopsychrophile, Chlamydomonas sp. UWO 241 (renamed Chlamydomonas priscuii). Photosynthesis Research. 2021;151(3):235–250. doi:10.1007/s11120-021-00877-5.
  • Neale PJ, Priscu JC. The Photosynthetic Apparatus of Phytoplankton from a Perennially Ice-covered Antarctic Lake: acclimation to an extreme shade environment. Plant and Cell Physiology. 1995;36(2):253–263. doi:10.1093/oxfordjournals.pcp.a078757.
  • Bielewicz S, Bell E, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM. Protist diversity in a permanently ice-covered Antarctic Lake during the polar night transition. The ISME Journal. 2011;5(9):1559–1564. doi:10.1038/ismej.2011.23.
  • Possmayer M, Berardi G, Beall BFN, Trick CG, Hüner NPA, Maxwell DP. Plasticity of the psychrophilic green alga Chlamydomonas raudensis (UWO 241) (Chlorophyta) to supraoptimal temperature stress: heat stress in a psychrophilic green alga. Journal of Phycology. 2011;47(5):1098–1109. doi:10.1111/j.1529-8817.2011.01047.x.
  • Pocock T, Lachance M-A, Pröschold T, Priscu JC, Kim SS, Huner NPA. IDENTIFICATION OF A PSYCHROPHILIC GREEN ALGA FROM LAKE BONNEY Antarctica: chlamydomonas raudensis ETTL. (UWO 241) CHLOROPHYCEAE. Chlorophyceae. Journal of Phycology. 2004;40(6):1138–1148. doi:10.1111/j.1529-8817.2004.04060.x.
  • Priscu J, Neale P. Phototactic response of phytoplankton forming discrete layers within the water column of Lake Bonney, Antarctica. Antarctic Journal of the US. 1995;30:301–303.
  • Zhang X, Cvetkovska M, Morgan-Kiss R, NPA H, Smith DR. Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. iScience. 2021;24(2):102084. doi:10.1016/j.isci.2021.102084.
  • Li W, Podar M, Morgan-Kiss RM, Kelly RM. Ultrastructural and single-cell-level characterization reveals Metabolic versatility in a microbial Eukaryote community from an ice-covered Antarctic Lake. Applied and Environmental Microbiology. 2016;82(12):3659–3670. doi:10.1128/AEM.00478-16.
  • Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. Targeting of photoreceptor genes in Chlamydomonas reinhardtii via Zinc-finger Nucleases and CRISPR/Cas9. The Plant Cell. 2017;29(10):2498–2518. doi:10.1105/tpc.17.00659.
  • Craig RJ, Gallaher SD, Shu S, Salomé P, Jenkins JW, Blaby-Haas CE, Purvine SO, O’Donnell S, Barry K, Grimwood J, et al. The Chlamydomonas Genome project, version 6: reference assemblies for mating type plus and minus strains reveal extensive structural mutation in the laboratory. The Plant Cell2022;35(2): 644–672.
  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science (New York, N.Y.). 2007;318(5848):245–250. doi:10.1126/science.1143609.
  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al. Pfam: the protein families database in 2021. Nucleic Acids Research. 2021;49(D1):D412–D419. doi:10.1093/nar/gkaa913.
  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research. 2020;48(D1):D265–D268. doi:10.1093/nar/gkz991.
  • Grigoriev IV, Hayes RD, Calhoun S, Kamel B, Wang A, Ahrendt S, Dusheyko S, Nikitin R, Mondo SJ, Salamov A, et al. PhycoCosm, a comparative algal genomics resource. Nucleic Acids Research. 2021;49(D1):D1004–D1011. doi:10.1093/nar/gkaa898.
  • Hirooka S, Hirose Y, Kanesaki Y, Higuchi S, Fujiwara T, Onuma R, Era A, Ohbayashi R, Uzuka A, Nozaki H, . 2017. Acidophilic green algal genome provides insights into adaptation to an acidic environment. . 114: E8304–E8313
  • Craig RJ, Hasan AR, Ness RW, Keightley PD. Comparative genomics of Chlamydomonas. Chlamydomonas. The Plant Cell. 2021;33(4):1016–1041. doi:10.1093/plcell/koab026.
  • Polle JEW, Barry K, Cushman J, Schmutz J, Tran D, Hathwaik LT, Yim WC, Jenkins J, McKie-Krisberg Z, Prochnik S, et al. Draft nuclear genome sequence of the Halophilic and Beta-Carotene-accumulating green Alga dunaliella salina strain CCAP19/18. Genome Announcements. 2017;5(5). doi:10.1128/genomeA.01105-17.
  • Hanschen ER, Marriage TN, Ferris PJ, Hamaji T, Toyoda A, Fujiyama A, Neme R, Noguchi H, Minakuchi Y, Suzuki M, et al. The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nature Communications. 2016;7(1):11370. doi:10.1038/ncomms11370.
  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, et al. Genomic analysis of organismal complexity in the multicellular green Alga Volvox carteri. Science (New York, N.Y.). 2010;329(5988):223–226. doi:10.1126/science.1188800.
  • Zhang Z, Qu C, Zhang K, He Y, Zhao X, Yang L, Zheng Z, Ma X, Wang X, Wang W, et al. Adaptation to extreme Antarctic environments revealed by the Genome of a Sea Ice green Alga. Current Biology. 2020;30(3330–3341.e7):3330–3341.e7. doi:10.1016/j.cub.2020.06.029.
  • Raymond JA, Morgan-Kiss R, Gibas C. Separate origins of Ice-binding proteins in Antarctic Chlamydomonas species. PLOS ONE. 2013;8(3):e59186. doi:10.1371/journal.pone.0059186.
  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 2011;7(1):539. doi:10.1038/msb.2011.75.
  • Ueki N, Wakabayashi K. Phototaxis Assay for Chlamydomonas reinhardtii. BIO-PROTOCOL. 2017;7(2):e2356.
  • Ueki N, Isu A, Kyuji A, Asahina Y, So S, Takahashi R, Hisabori T, Wakabayashi K-I. Observation of Photobehavior in Chlamydomonas reinhardtii. Journal of Visualized Experiments: JoVE. 2022;183:e63961.
  • Wakabayashi K-I, Misawa Y, Mochiji S, Kamiya R. 2011. Reduction-oxidation poise regulates the sign of phototaxis in 108: 11280–11284.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to imageJ: 25 years of image analysis. Nature Methods. 2012;9(7):671–675. doi:10.1038/nmeth.2089.
  • Possmayer M, Gupta RK, Szyszka-Mroz B, Maxwell DP, Lachance M, Hüner NPA, Smith DR. Resolving the phylogenetic relationship between Chlamydomonas sp. UWO 241 and Chlamydomonas raudensis sag 49.72 (Chlorophyceae) with nuclear and plastid DNA sequences. Journal of Phycology. 2016;52(2):305–310. doi:10.1111/jpy.12383.
  • Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P. Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. The Plant Cell. 2008;20(6):1665–1677. doi:10.1105/tpc.108.057919.
  • Baidukova O, Oppermann J, Kelterborn S, Fernandez Lahore RG, Schumacher D, Evers H, Kamrani YY, Hegemann P. Gating and ion selectivity of Channelrhodopsins are critical for photo-activated orientation of Chlamydomonas as shown by in vivo point mutation. Nature Communications. 2022;13(1):7253. doi:10.1038/s41467-022-35018-6.
  • Böhm M, Boness D, Fantisch E, Erhard H, Frauenholz J, Kowalzyk Z, Marcinkowski N, Kateriya S, Hegemann P, Kreimer G. Channelrhodopsin-1 Phosphorylation changes with phototactic behavior and responds to physiological Stimuli in Chlamydomonas. Chlamydomonas. The Plant Cell. 2019;31(4):886–910. doi:10.1105/tpc.18.00936.
  • Wakabayashi K, Isu A, Ueki N. Channelrhodopsin-Dependent photo-behavioral responses in the unicellular green Alga Chlamydomonas reinhardtii. In: Yawo H, Kandori H, Koizumi A, Kageyama R, editors. Advances in experimental medicine and biology. Optogenetics: light-sensing proteins and their applications in neuroscience and beyond. Singapore: Springer; 2021. p. 21–33.
  • Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature. 2012;482(7385):369–374. doi:10.1038/nature10870.
  • Lizotte MP, Sharp TR, Priscu JC. Phytoplankton dynamics in the stratified water column of Lake Bonney, Antarctica. Polar Biology. 1996;16(3):155–162. doi:10.1007/BF02329203.
  • Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, et al. A flavin binding Cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Chlamydomonas Reinhardtii. The Plant Cell. 2012;24(7):2992–3008. doi:10.1105/tpc.112.098947.
  • Luck M, Hegemann P. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1. Journal of Plant Physiology. 2017;217:77–84. doi:10.1016/j.jplph.2017.07.008.
  • Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Nguyen TMT, Kateriya S, Kennis JTM, Hildebrandt P, Hegemann P. A Photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by Ultraviolet and blue light. Journal of Biological Chemistry. 2012;287(47):40083–40090. doi:10.1074/jbc.M112.401604.
  • Nakasone Y, Ohshima M, Okajima K, Tokutomi S, Terazima M. Photoreaction Dynamics of LOV1 and LOV2 of phototropin from Chlamydomonas reinhardtii. Chlamydomonas Reinhardtii. The Journal of Physical Chemistry B. 2018;122(6):1801–1815. doi:10.1021/acs.jpcb.7b10266.
  • Li F-W, Rothfels CJ, Melkonian M, Villarreal JC, Stevenson DW, Graham SW, Wong GK-S, Mathews S, Pryer KM. The origin and evolution of phototropins. Frontiers in Plant Science. 2015;6:637. doi:10.3389/fpls.2015.00637.
  • Qian W, Zhang J. Genomic evidence for adaptation by gene duplication. Genome Research. 2014;24(8):1356–1362. doi:10.1101/gr.172098.114.
  • Kong W, Ream DC, Priscu JC, Morgan-Kiss RM. Diversity and expression of RubisCO genes in a perennially Ice-covered Antarctic Lake during the polar night transition. Applied and Environmental Microbiology. 2012;78(12):4358–4366. doi:10.1128/AEM.00029-12.
  • Okita N, Isogai N, Hirono M, Kamiya R, Yoshimura K. Phototactic activity in Chlamydomonas ‘non-phototactic’ mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. Journal of Cell Science. 2005;118(3):529–537. doi:10.1242/jcs.01633.
  • Lizotte MP, Priscu JC. Natural fluorescence and quantum yields in vertically stationary phytoplankton from perennially ice-covered lakes. Limnology and Oceanography. 1994;39(6):1399–1410. doi:10.4319/lo.1994.39.6.1399.
  • Morgan-Kiss R, Ivanov AG, Williams J, Mobashsher K, Huner NPA. Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2002;1561(2):251–265. doi:10.1016/S0005-2736(02)00352-8.
  • Szyszka B, Ivanov AG, Hüner NPA. Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2007;1767(6):789–800. doi:10.1016/j.bbabio.2006.12.001.
  • Szyszka-Mroz B, Pittock P, Ivanov AG, Lajoie G, Hüner NPA. The Antarctic psychrophile Chlamydomonas sp. UWO 241 preferentially phosphorylates a photosystem I-Cytochrome b 6 / f Supercomplex. Plant Physiology. 2015;169(1):717–736. doi:10.1104/pp.15.00625.
  • Kalra I, Wang X, Cvetkovska M, Jeong J, McHargue W, Zhang R, Hüner N, Yuan JS, Morgan-Kiss R. Chlamydomonas sp. UWO 241 exhibits high cyclic electron flow and rewired metabolism under high salinity. Plant Physiology. 2020;183(2):588–601. doi:10.1104/pp.19.01280.
  • Priscu JC. Phytoplankton nutrient deficiency in lakes of the McMurdo dry valleys, Antarctica. Freshwater Biology. 1995;34(2):215–227. doi:10.1111/j.1365-2427.1995.tb00882.x.
  • Teufel AG, Li W, Kiss AJ, Morgan-Kiss RM. Impact of nitrogen and phosphorus on phytoplankton production and bacterial community structure in two stratified Antarctic lakes: a bioassay approach. Polar Biology. 2016;5:1007–1022.
  • Obryk MK, Doran PT, Priscu JC. Prediction of Ice-Free conditions for a perennially ice-covered Antarctic Lake. Journal of Geophysical Research: Earth Surface. 2019;124(2):686–694. doi:10.1029/2018JF004756.
  • Gooseff MN, Barrett JE, Adams BJ, Doran PT, Fountain AG, Lyons WB, McKnight DM, Priscu JC, Sokol ER, Takacs-Vesbach C, et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nature Ecology & Evolution. 2017;1(9):1334–1338. doi:10.1038/s41559-017-0253-0.