2,740
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Exogenous Brassinosteroid Enhances Zinc tolerance by activating the Phenylpropanoid Biosynthesis pathway in Citrullus lanatus L

, , &
Article: 2186640 | Received 09 Jan 2023, Accepted 27 Feb 2023, Published online: 21 Apr 2023

References

  • Arora NK, Chauhan R. Heavy metal toxicity and sustainable interventions for their decontamination. Environ Sustain. 2021;4:1–10.
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol. 2007;173:677–702.
  • Kaur H, Garg N. Zinc toxicity in plants: a review. Planta. 2021;253:129.
  • Wei C, Jiao Q, Agathokleous E, Liu H, Li G, Zhang J, Fahad S, Jiang Y. Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Sci Total Environ. 2022;807:150992.
  • Ren Y, Li X, Liang J, Wang S, Wang Z, Chen H, Tang M. Brassinosteroids and gibberellic acid actively regulate the zinc detoxification mechanism of Medicago sativa L. seedlings. BMC Plant Biol. 2023;23:1–13.
  • Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Bioch. 2009;47:1–8.
  • Basit F, Liu J, An J, Chen M, He C, Zhu X, Li Z, Hu J, Guan Y. Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses. Environ Sci Pollut Res Int. 2021;28:44768–44779.
  • Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Sharma A. Brassinosteroid signaling, crosstalk and, physiological functions in plants under heavy metal stress. Front Plant Sci. 2021;12:608061.
  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Zhaorong D. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Safety. 2018;147:935–944.
  • He J, Wang Y, Ding H, Ge CL. Epibrassinolide confers zinc stress tolerance by regulating antioxidant enzyme responses, osmolytes, and hormonal balance in Solanum melongena seedlings. Braz J Bot. 2016;39:295–303.
  • dos Santos LR, da Silva BRS, Pedron T, Batista BL, Lobato AKDS. 24-epibrassinolide improves root anatomy and antioxidant enzymes in soybean plants subjected to zinc stress. J Soil Sci Plant Nutr. 2020;20:105–124.
  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24:2452.
  • Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3:2–20.
  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman JF, Guerriero G. Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot. 2019;161:98–106.
  • Aghaee P, Rahmani F. Seed priming with 24-epibrassinolide alters growth and phenylpropanoid pathway in flax in response to water deficit. J Agr Sci Tech. 2020;22:1039–1052.
  • Shahzad R, Harlina PW, Ewas M, Zhenyuan P, Nie X, Gallego PP, Jia H. Foliar applied 24-epibrassinolide alleviates salt stress in rice (Oryza sativa L.) by suppression of ABA levels and upregulation of secondary metabolites. J Plant Inter. 2021;16:533–549.
  • Zhang L, Zhang Z, Ahammed GJ, Wang X, Fang H, Yan P, Li X. 24-Epibrassinolide enhances resistance against Colletotrichum fructicola by promoting lignin biosynthesis in Camellia sinensis. J Plant Growth Regul 2022. doi:10.1007/s00344-022-10640-2.
  • Everaert C, Luypaert M, Maag JLV, Cheng QX, Dinger ME, Hellemans J, Mestdagh P. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci Rep. 2017;7:1559.
  • Wang Y, Wang X, Wang C, Peng F, Wang R, Xiao X, Zhou Y. Transcriptomic profiles reveal the interactions of Cd/Zn in dwarf polish wheat (Triticum polonicum L.) roots. Front Physiol. 2017;8:168.
  • Kintlová M, Blavet N, Cegan R, Hobza R. Transcriptome of barley under three different heavy metal stress reaction. Genom Data. 2017;13:15–17.
  • Wan J, Wang R, Wang R, Ju Q, Wang Y, Xu J. Comparative physiological and transcriptomic analyses reveal the toxic effects of ZnO nanoparticles on plant growth. Environ Sci Technol. 2019;53:4235–4244.
  • Wu QS, Xia RX, Zou YN. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol. 2006;163:1101–1110.
  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–915.
  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:316–322.
  • Shao R, Zhang J, Shi W, Wang Y, Tang Y, Liu Z, Sun W, Wang H, Guo J, Meng Y. Mercury stress tolerance in wheat and maize is achieved by lignin accumulation controlled by nitric oxide. Environ Pollut. 2022;307:119488.
  • Alam P, Albalawi TH, Altalayan FH, Bakht MA, Ahanger MA, Raja V, Ashraf M, Ahmad P. 24-epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system. Biomol. 2019;9:640.
  • Xu T, Zhang S, Du K, Yang J, Kang X. Insights into the molecular regulation of lignin content in Triploid poplar Leaves. Int J Mol Sci. 2022;23:4603.
  • Ramakrishna B, Rao SSR. Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma. 2015;252:665–677.
  • Wu XX, Chen JL, Xu S, Zhu ZW, Zha DS. Exogenous 24-epibrassinolide alleviates zinc-induced toxicity in eggplant (Solanum melongena L.) seedlings by regulating the glutathione-ascorbate-dependent detoxification pathway. J Hortic Sci Biotech. 2016;91:412–420.
  • Zhang Y, Liao H. Epibrassinolide improves the growth performance of Sedum lineare upon Zn stress through boosting antioxidative capacities. PLoS ONE. 2021;16:e0257172.
  • Ahanger MA, Mir RA, Alyemeni MN, Ahmad P. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol Bioch. 2020;147:31–42.
  • Hasan SA, Hayat S, Ali B, Ahmad A. 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut. 2008;51:60–66.
  • Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol. 2018;18:1–18.
  • Maia CF, Pereira YC, da Silva BRS, Batista BL, Lobato AKDS. Exogenously applied 24-epibrassinolide favours stomatal performance, ROS detoxification and nutritional balance, alleviating oxidative damage against the photosynthetic apparatus in tomato leaves under nickel stress. J Plant Growth Regul. 2022. doi:10.1007/s00344-022-10693-3.
  • SurgunAcar Y, ZemheriNavruz F. Exogenous application of 24epibrassinolide improves manganese tolerance in Arabidopsis thaliana L. via the modulation of antioxidant system. J Plant Growth Regul. 2022;41:546–557.
  • Alam P, Balawi TA, Ashraf M, Ahmad P. 24-Epibrassinolide (EBR) reduces oxidative stress damage induced by cadmium toxicity by restricting cd uptake and modulating some key antioxidant enzymes in maize plants. Pak J Bot. 2021;53:59–66.
  • Ramakrishna B, Rao SSR. 24-Epibrassinolide alleviated zincinduced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system. Plant Growth Regul. 2012;68:249–259.
  • Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A. Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica. 2011;49: 397–404.
  • Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Bio. 2022;23:663–679.
  • Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol Bioch. 2019;141:353–369.
  • Jin XF, Yang XE, Islam E, Liu D, Mahmood Q, Li H, Li J. Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol Bioch. 2008;46: 997–1006.
  • Yaqoob U, Jan N, Raman PV, Siddique KH, John R. Crosstalk between brassinosteroid signaling, ROS signaling and phenylpropanoid pathway during abiotic stress in plants: does it exist? Plant Stress . 2022;4:100075.
  • Bhaduri AM, Fulekar MH. Antioxidant enzyme responses of plants to heavy metal stress. null. 2012;11:55–69.
  • Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotox Environ Safe. 2019;169:134–143.
  • Lavid N, Schwartz A, Yarden O, Tel-Or E. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta. 2001;212:323–331.
  • Qiao K, Liang S, Wang F, Wang H, Hu Z, Chai T. Effects of cadmium toxicity on diploid wheat (Triticum urartu) and the molecular mechanism of the cadmium response. J Hazard Mater. 2019;374:1–10.
  • Russell WR, Burkitt MJ, Scobbie L, Chesson A. EPR investigation into the effects of substrate structure on peroxidase-catalyzed phenylpropanoid oxidation. Biomacromolecules. 2006;7:268–273.
  • Xu X, Chen Q, Mo S, Qian Y, Wu X, Jin Y, Ding H. Transcriptome-wide modulation combined with morpho-physiological analyses of Typha orientalis roots in response to lead challenge. J Hazard Mater. 2020;384:121405.
  • Yue Z, Chen Y, Chen C, Ma K, Tian E, Wang Y, Liu H, Sun Z. Endophytic Bacillus altitudinis WR10 alleviates Cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. J Hazard Mater. 2021;405:124272.
  • Gan T, Lin Z, Bao L, Hui T, Cui X, Huang Y, Wang H, Su C, Jiao F, Zhang M, et al. Comparative proteomic analysis of tolerant and sensitive varieties reveals that phenylpropanoid biosynthesis contributes to salt tolerance in Mulberry. Int J Mol Sci. 2021;22:9402.
  • Li X, Ahammed GJ, Li ZX, Zhang L, Wei JP, Shen C, Yan P, Zhang LP, Han WY. Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids. Front Plant Sci. 2016;7:1304.
  • Xi ZM, Zhang ZW, Huo SS, Luan LY, Gao X, Ma LN, Fang YL. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem. 2013;141:3056–3065.
  • Arenas-Lago D, Carvalho LC, Santos ES, Abreu MM. The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. Ecotox Environ Safe. 2016;129:219–227.