1,451
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Effects of Cd treatment on morphology, chlorophyll content and antioxidant enzyme activity of Elymus nutans Griseb., a native plant in Qinghai-Tibet Plateau

, , , , , & show all
Article: 2187561 | Received 07 Feb 2023, Accepted 01 Mar 2023, Published online: 20 Mar 2023

References

  • Meng Y, Jing H, Huang J, Shen R, Zhu X. 2022. The role of nitric oxide signaling in plant responses to cadmium stress. Int J Mol Sci. 23:6901. doi:10.3390/ijms23136901.
  • Ramana S, Tripathi AK, Kumar A, Dey P, Saha JK, Patra AK. Evaluation of Furcraea foetida (L.)haw. for phytoremediation of cadmium contaminated soils. Environ Sci Pollut Res Int. 2021; 28:14177–8. doi:10.1007/s11356-021-12534-4.
  • Bansal R, Priya S, Dikshit HK, Jacob SR, Rao M, Bana RS, Kumari J, Tripathi K, Kumar A, Kumar S, et al. Growth and antioxidant responses in iron-biofortified lentil under cadmium stress. Toxics. 2021; 9(8):182. doi:10.3390/toxics9080182.
  • Jiang N, Li Z, Yang J, Zu Y. Responses of antioxidant enzymes and key resistant substances in perennial ryegrass (Lolium perenne L.) to cadmium and arsenic stresses. BMC Plant Biol. 2022; 22:145. doi:10.1186/s12870-022-03475-2.
  • Eissa MA, Abeed AHA. Growth and biochemical changes in quail bush (Atriplex lentiformis (Torr.) S.Wats) under Cd stress. Environ Sci Pollut Res Int. 2019; 26:628–635. doi:10.1007/s11356-018-3627-1.
  • Eissa MA, Almaroai YA. Phytoremediation capacity of some forage plants grown on a metals-contaminated Soil. Soil Sed Conta Int J. 2019; 28:569–581. doi:10.1080/15320383.2019.1634674.
  • Li Y, Wang Y, Khan MA, Luo W, Xiang Z, Xu W, Zhong B, Ma J, Ye Z, Zhu Y, et al. Effect of plant extracts and citric acid on phytoremediation of metal-contaminated soil. Ecotoxicol Environ Saf, 2021; 211:111902. doi:10.1016/j.ecoenv.2021.111902.
  • Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep. 2021; 11:9913. doi:10.1038/s41598-021-89322-0.
  • Karalija E, Selovic A. The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress. Environ Sci Pollut Res Int. 2018; 25:33370–33380. doi:10.1007/s11356-018-3220-7.
  • Qu B, Zhang Y, Kang S, Sillanpaa M. Water quality in the Tibetan Plateau: major ions and trace elements in rivers of the “Water Tower of Asia”. Sci Total Environ. 2019; 649:571–581. doi:10.1016/j.scitotenv.2018.08.316.
  • Jiang W, Wu Z, Wang T, Mantri N, Huang H, Li H, Tao Z, Guo Q. Physiological and transcriptomic analyses of cadmium stress response in Dendrobium officinale seedling. Plant Physiol Biochem. 2020; 148:152–165. doi:10.1016/j.plaphy.2020.01.010.
  • Waheed A, Haxim Y, Islam W, Ahmad M, Ali S, Wen X, Khan KA, Ghramh HA, Zhang Z, Zhang D. Impact of Cadmium Stress on Growth and Physio-Biochemical Attributes of Eruca sativa Mill. Plants (Basel). 2022; 11. doi:10.3390/plants11212981.
  • Liu D, Gao Z, Li J, Yao Q, Tan W, Xing W, Lu Z. Effects of cadmium stress on the morphology, physiology, cellular ultrastructure, and BvHIPP24 gene expression of sugar beet (Beta vulgaris L.). Int J Phytoremediation. 2022; 1–11. doi:10.1080/15226514.2022.2090496.
  • Song Y, Wang C, Linderholm HW, Tian J, Shi Y, Xu J, Liu Y. Agricultural adaptation to global warming in the Tibetan Plateau. Int J Environ Res Public Health. 2019; 16. doi:10.3390/ijerph16193686.
  • Dai L, Wang L, Liang T, Zhang Y, Li J, Xiao J, Dong L, Zhang H. Geostatistical analyses and co-occurrence correlations of heavy metals distribution with various types of land use within a watershed in eastern QingHai-Tibet Plateau, China. Sci Total Environ. 2019; 653:849–859. doi:10.1016/j.scitotenv.2018.10.386.
  • Wu J, Lu J, Li L, Min X, Luo Y. 2018. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere. 201:234–242. doi:10.1016/j.chemosphere.2018.02.122.
  • Gao MY, Chen XW, Huang WX, Wu L, Yu ZS, Xiang L, Mo CH, Li YW, Cai QY, Wong MH, et al. Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root. J Hazard Mater, 2021; 416:125894. doi:10.1016/j.jhazmat.2021.125894.
  • Qi J, Liu W-H, Hamblin A, Che M. Zinc and cadmium tolerance in different ecotypes of Elymus Nutans from Alpine Grassland of Qinghai-Tibet Plateau. Commun Soil Sci Plant Anal. 2022; 53:1158–1175. doi:10.1080/00103624.2022.2043346.
  • Fang Z, Hu Z, Zhao H, Yang L, Ding C, Lou L, Cai Q. Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorumLam) during germination. Grassland Sci. 2017; 63:36–45. doi:10.1111/grs.12138.
  • Ozfidan-Konakci C, Yildiztugay E, Bahtiyar M, Kucukoduk M. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol Environ Saf. 2018; 155:66–75. doi:10.1016/j.ecoenv.2018.02.071.
  • Li L, Guo B, Feng C, Liu H, Lin D. Growth, physiological, and temperature characteristics in Chinese cabbage pakchoi as affected by Cd- stressed conditions and identifying its main controlling factors using PLS model. BMC Plant Biol. 2022; 22:571. doi:10.1186/s12870-022-03966-2.
  • Manzoor H, Mehwish Bukhat S, Rehmani S, Rasul MIA, Athar S, Noreen HU, Zafar ZU, Soufan M, Skalicky W, Soufan W, et al. Methyl Jasmonate Alleviated the adverse effects of cadmium stress in Pea (Pisum sativum L.): a Nexus of photosystem II activity and dynamics of Redox balance. Front Plant Sci, 2022; 13:860664. doi:10.3389/fpls.2022.860664.
  • Catav SS, Genc TO, Oktay MK, Kucukakyuz K. Cadmium toxicity in wheat: impacts on element contents, antioxidant enzyme activities, oxidative stress, and genotoxicity. Bull Environ Contam Toxicol. 2020; 104:71–77. doi:10.1007/s00128-019-02745-4.
  • Zhu T, Li L, Duan Q, Liu X, Chen M. Progress in our understanding of plant responses to the stress of heavy metal cadmium. Plant Signal Behav. 2021; 16:1836884. doi:10.1080/15592324.2020.1836884.
  • Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, Siddique KHM. Abscisic acid: metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Front Plant Sci. 2022; 13:972856. doi:10.3389/fpls.2022.972856.
  • Matilla AJ. Auxin: hormonal signal required for seed development and dormancy. Plants (Basel). 2020; 9. doi:10.3390/plants9060705.
  • Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z, Qu L-J. 2011. Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet. 7:e1002172. doi:10.1371/journal.pgen.1002172.
  • Shu K, Zhou W, Chen F, Luo X, Yang W. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Front Plant Sci. 2018; 9:416. doi:10.3389/fpls.2018.00416.
  • Wang F, Tan H, Huang L, Cai C, Ding Y, Bao H, Chen Z, Zhu C. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice. Ecotoxicol Environ Saf. 2021; 207:111198. doi:10.1016/j.ecoenv.2020.111198.
  • Li Y, Zhang S, Bao Q, Chu Y, Sun H, Huang Y. Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.). Environ Pollut. 2022; 304:119178. doi:10.1016/j.envpol.2022.119178.
  • Dalmaijer ES, Nord CL, Astle DE. Statistical power for cluster analysis. BMC Bioinform. 2022; 23:205. doi:10.1186/s12859-022-04675-1.
  • Zhang H, Heal K, Zhu X, Tigabu M, Xue Y, Zhou C. Tolerance and detoxification mechanisms to cadmium stress by hyperaccumulator Erigeron annuus include molecule synthesis in root exudate. Ecotoxicol Environ Saf. 2021; 219:112359. doi:10.1016/j.ecoenv.2021.112359.
  • Viehweger K. How plants cope with heavy metals. Bot Stud. 2014; 55:35. doi:10.1186/1999-3110-55-35.
  • Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Brtnicky M, Hladky J, Kynicky J. Oxidative stress and heavy metals in plants. Rev Environ Contam Toxicol. 2018; 245:129–156. doi:10.1007/398_2017_7.
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy metal stress and some mechanisms of plant defense response. ScientificWorldjournal. 2015; 2015:756120. doi:10.1155/2015/756120.
  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol. 2014; 232:1–44. doi:10.1007/978-3-319-06746-9_1.
  • Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules. 2021; 12. doi:10.3390/biom12010043.
  • Sharma A, Kapoor D, Gautam S, Landi M, Kandhol N, Araniti F, Ramakrishnan M, Satish L, Singh VP, Sharma P, et al. Heavy metal induced regulation of plant biology: recent insights. Physiol Plant, 2022; 174:e13688. doi:10.1111/ppl.13688.
  • Chen YP, Li R, He JM. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology. 2011; 20:760–769. doi:10.1007/s10646-011-0620-6.
  • Han Z, Wei X, Wan D, He W, Wang X, Xiong Y. 2020. Effect of molybdenum on plant physiology and cadmium uptake and translocation in rape (Brassica napus L.) under different levels of cadmium stress. Int J Environ Res Public Health. 17:2355. doi:10.3390/ijerph17072355.
  • Zaid A, Mohammad F, Fariduddin Q. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol Mol Biol Plants. 2020; 26:25–39. doi:10.1007/s12298-019-00715-y.
  • Yildirim E, Ekinci M, Turan M, Agar G, Örs S, Dursun A, Kul R, Balci T. Ağır Metal Stresinin Rokada (Eruca sativa L.) Bitki Büyümesi ve Fizyolojisi Üzerine Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2019. doi:10.18016/ksutarimdoga.vi.548626.
  • Mihaličová Malčovská S, Dučaiová Z, Maslaňáková I, Bačkor M. Effect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excess. Water Air Soil Pollu. 2014; 225. doi:10.1007/s11270-014-2056-0.
  • Bela K, Horvath E, Galle A, Szabados L, Tari I, Csiszar J. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol. 2015; 176:192–201. doi:10.1016/j.jplph.2014.12.014.
  • Yan F, Mu Y, Yan G, Liu J, Shen J, Luo G. Antioxidant enzyme mimics with synergism. Mini Rev Med Chem. 2010; 10:342–356. doi:10.2174/138955710791330972.
  • Dai F, Luo G, Li Z, Wei X, Wang Z, Lin S, Tang C. Physiological and transcriptomic analyses of mulberry (Morus atropurpurea) response to cadmium stress. Ecotoxicol Environ Saf. 2020; 205:111298. doi:10.1016/j.ecoenv.2020.111298.
  • Yang Z, Xue B, Song G, Shi S. Effects of citric acid on antioxidant system and carbon-nitrogen metabolism of Elymus dahuricus under Cd stress. Ecotoxicol Environ Saf. 2022; 233:113321. doi:10.1016/j.ecoenv.2022.113321.
  • Ci D, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum. 2009; 32:365–373. doi:10.1007/s11738-009-0414-0.
  • Ma YL, Wang HF, Wang P, Yu CG, Luo SQ, Zhang YF, Xie YF. Effects of cadmium stress on the antioxidant system and chlorophyll fluorescence characteristics of two Taxodium clones. Plant Cell Rep. 2018; 37:1547–1555. doi:10.1007/s00299-018-2327-0.
  • Ilyas M, Shah S, Lai YW, Sher J, Bai T, Zaman F, Bibi F, Koul M, Wani SH, Majrashi A, et al. Leaf functional traits of invasive grasses conferring high-cadmium adaptation over natives. Front Plant Sci, 2022; 13:869072. doi:10.3389/fpls.2022.869072.