2,328
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Mitigation of salt stress in Indian mustard (Brassica juncea L.) by the application of triacontanol and hydrogen sulfide

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2189371 | Received 24 Nov 2022, Accepted 04 Mar 2023, Published online: 19 Mar 2023

References

  • Verma S, Nizam S, Verma PK. 2013. Biotic and abiotic stress signaling in plants. In: Sarwat M, Ahmad A, Abdin M, editors. Stress signaling in plants: genomics and proteomics perspective. New York, NY: Springer; Vol. 1, p. 25–13.
  • Farooq MS, Uzaiir M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan KM. Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci. 2022;13:927535. doi:10.3389/fpls.2022.927535.
  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK, et al. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol. 2022;1–28. doi:10.1080/07388551.2022.2093695
  • Shrivastava P, Kumar R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biological Sci. 2015;22(2):123–131. doi:10.1016/j.sjbs.2014.12.001.
  • Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AM, Raza A, Fatima EM, Baloch H, Woodrow P, Ciarmiello LF. Effect of salinity stress on physiological changes in winter and springwheat. Agronomy. 2021;11(6):1193. doi:10.3390/agronomy11061193.
  • Khan MI, Jahan B, Alajmi MF, Rehman MT, Khan NA. Gene regulation in halophytes in conferring salt tolerance. In: Hasanuzzaman M, Prasad MN, editors. Handbook of Bioremediation. United States: Academic press; 2021. pp. 341–370.
  • Fahad S. The different impact on the growth of cool season turf grass under the various conditions on salinity and draught stress. Int J Agric Sci Res. 2013;3(4): 77–84.
  • Khan MIR, et al. Exogenously-sourced ethylene modulates defense mechanisms and promotes tolerance to zinc stress in mustard (Brassica juncea L.). Plants. 2019;8(12):540. doi:10.3390/plants8120540.
  • Iqbal N, Masood A, Khan NA. Phytohormones in salinity tolerance: ethylene and gibberellins cross talk. In: Khan NA, Nazar R, Iqbal N, Anjum NA, editors. Phytohormones and abiotic stress tolerance in plants. Verlag Berlin Heidelberg, Germany: Springer; 2012; p. 77–98.
  • EL Sabagh A, Islam MS, Hossain A, Iqbal MA, Mubeen M, Waleed M, Reginato M, Battaglia M, Ahmed S, Rehman A, et al. Phytohormones as growth regulators during abiotic stress tolerance in plants. 2022. doi:10.3389/fagro.2022.765068.
  • Wani SH, Kumar V, Shriram V, Sah SK. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4(3):162–176. doi:10.1016/j.cj.2016.01.010.
  • Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar HM, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, et al. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci. 2022;13:961872. doi:10.3389/fpls.2022.961872.
  • Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H, et al. Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol. 2022;24:540–558. doi:10.1111/plb.13368.
  • Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM Crops & Food. 2022;13(1):196–217. doi:10.1080/21645698.2022.2106111.
  • Lei Y, He H, Raza A, Liu Z, Xiaoyu D, Guijuan W, Yan L, Yong C, Xiling Z. Exogenous melatonin confers cold tolerance in rapeseed (Brassica napus L.) seedlings by improving antioxidants and genes expression. Plant Signal Behav. 2022;17(1):2129289. doi:10.1080/15592324.2022.2129289.
  • Raza A, Charagh S, Abbas S, Hassan MU, Saeed F, Haider S, Sharif R, Anand A, Corpas FJ, Jin W, et al. Assessment of proline function in higher plants under extreme temperatures. Plant Biology; 2023.
  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_allah EF, Hashem A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol. 2017;8:2104. doi:10.3389/fmicb.2017.02104.
  • Ries S, Wert V, Houtz R. Rapid in vivo and in vitro effects of triacontanol. J Plant Growth Regul. 1982;1:117–127.
  • Muthuchelian K, Bertamini M, Nedunchezhian N. Triacontanol can protect Erythrina variegata from cadmium toxicity. J Plant Physiol. 2001;158(11):1487–1490. doi:10.1078/0176-1617-00627.
  • Chen F, D'Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. 2003;36(5):577–588. doi:10.1046/j.1365-313X.2003.01902.x.
  • Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot. 2011;62(13):4481–4493. doi:10.1093/jxb/err145.
  • Kiliç NK, Duygu E, Dönmez G. Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. J Hazard Mater. 2010;182(1–3):525–530. doi:10.1016/j.jhazmat.2010.06.063.
  • Kılıç NK, Karatay SE, Duygu E, Dönmez G. Potential of Gonium spp. in synthetic reactive dye removal, possible role of laccases and stimulation by triacontanol hormone. Water, Air Soil Pollut. 2011;222(1):297–303. doi:10.1007/s11270-011-0824-7.
  • Perveen S, Shahbaz M, Ashraf M. Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot. 2010;42:3073–3081.
  • Perveen S, Shahbaz M, Ashraf M. Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot. 2011;43:2463–2468.
  • Corpas FJ, Palma JM. H2S signaling in plants and applications in agriculture. J Adv Res. 2020;24:131–137. doi:10.1016/j.jare.2020.03.011.
  • García–mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol. 2010;188(4):977–984. doi:10.1111/j.1469-8137.2010.03465.x.
  • Jing L, Hou Z-H, Liu G-H, Hou L-X, Liu X. Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L. J Integr Agric. 2012;11(10):1644–1653. doi:10.1016/S2095-3119(12)60167-1.
  • Kumar V, Thakur AK, Barothia ND, Chatterjee SS. Therapeutic potentials of Brassica juncea: an overview. CellMed. 2011;1(1):.2.1–2.16. doi:10.5667/tang.2011.0005.
  • Priya K, Sharma P, Choudhary OP, Sardana V. Regulation of salinity tolerance in Brassica juncea (L.) introgression lines: osmoprotectants, antioxidative molecules and ionic content. GSC Adv Res Rev. 2021;6(3):116–131. doi:10.30574/gscarr.2021.6.3.0038.
  • Ashraf M, McNeilly T. Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci. 2004;23(2):157–174. doi:10.1080/07352680490433286.
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: i. Kinetics and stoichiometry of fatty acid peroxidation.Arch Biochem Biophy. 1968;125(1):189–198. doi:10.1016/0003-9861(68)90654-1.
  • Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant science. 2000;151(1):59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Kim MS, Chul K, Jo DH, Yeon WR. Effect of fungal elicitor and heavy metals on the production of flavonol glycosides in cell cultures of Ginkgo biloba. J Microbiol Biotechnol. 1999;9(5):661–667.
  • Malick C, Singh M. Phenolics. Plant enzymology and histoenzymology. Vol. 286, New Delhi: Kalyani Publishers; 1980.
  • Mancinelli AL. Photoregulation of anthocyanin synthesis: vIII. Effect of light pretreatments. Plant Physiol. 1984;75(2):447–453. doi:10.1104/pp.75.2.447.
  • Lowry OH, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. doi:10.1016/S0021-9258(19)52451-6.
  • Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. Academic press: United States; 1983; p. 673–684.
  • Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
  • Bergmeyer HU. Meth enzymatic analysis. Academic press: United States; 1974; Vol. 2, p. 685–690.
  • Kumar K, Pa K. Peroxidase & polyphenol oxidase in excised ragi (Eleusine coracana CV PR 202) leaves during senescence. Indian J Exp Bot. 1982;20:412–416.
  • Roe JH, Kuether CA. The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine derivative of dehydroascorbic acid. J Biol Chem. 1943;147:399–407. doi:10.1016/S0021-9258(18)72395-8.
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192–205. doi:10.1016/0003-2697(68)90092-4.
  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol. 2008;50(12):1518–1529. doi:10.1111/j.1744-7909.2008.00769.x.
  • Singh M, Khan MMA, Moinuddin, Naeem M. Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosyt-An Int J Dealing Aspects Plant Biol. 2012;146(1):106–113. doi:10.1080/11263504.2011.575891.
  • Naeem M, Khan MMA. Phosphorus ameliorates crop productivity, photosynthesis, nitrate reductase activity and nutrient accumulation in coffee senna (Senna occidentalis L.) under phosphorus-deficient soil MoinuddinInt. J Plant Dev Biol. 2010;4:53–59. doi:10.1080/17429140802193178.
  • Naeem MM, Khan MM, Idrees M, Aftab T. Triacontanol-mediated regulation of growth and other physiological attributes, active constituents and yield of Mentha arvensis L. Plant Growth Regul. 2011;65(1):195–206. doi:10.1007/s10725-011-9588-8.
  • Suman K, Kondamudi R, Rao YV, Kiran TV, Swamy KN, Rao PR, Subramanyam D, Voleti SR. Effect of triacontanol on seed germination, seedling growth and antioxidant enzyme in rice under poly ethylene glycol induced drought stress. Andhra Agric J. 2013;60:132–137.
  • Fang T, Cao Z, Li J, Shen W, Huang L. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem. 2014;76:44–51. doi:10.1016/j.plaphy.2013.12.024.
  • Grace SC. Phenolics as antioxidants. In: Smirnoff N, editor. Antioxidants and reactive oxygen species in plants. Oxford UK: Blackwell publishing Ltd; 2005; p. 141–168.
  • Ertani A, Schiavon M, Muscolo A, Nardi S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil. 2013;364(1):145–158. doi:10.1007/s11104-012-1335-z.
  • Ren S-C, Sun J-T. Changes in phenolic content, phenylalanine ammonia-lyase (PAL) activity, and antioxidant capacity of two buckwheat sprouts in relation to germination. J Funct Foods. 2014;7:298–304. doi:10.1016/j.jff.2014.01.031.
  • Rahman K. Studies on free radicals, antioxidants, and co-factors. Clinical interventions in aging. 2007;2(2):219.
  • Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–19. doi:10.1016/j.tplants.2016.08.002.
  • Fatemi H, Esmaiel Pour B, Rizwan M. Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environ Sci Pollut Res. 2021;28(2):1417–1425. doi:10.1007/s11356-020-10549-x.
  • Kumaravelu G, Livingstone VD, Ramanujam M. Triacontanol-induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biologia plantarum. 2000;43(2):287–290. doi:10.1023/A:1002724831619.
  • Ni Z-J, Hu K-D, Song C-B, Ma R-H, Li Z-R, Zheng J-L, Fu L-H, Wei Z-J, Zhang H. Hydrogen sulfide alleviates postharvest senescence of grape by modulating the antioxidant defenses. Oxid Med Cell Longev. 2016;2016. doi:10.1155/2016/4715651.
  • Hernández JA, Almansa MS. Short–term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant. 2002;115(2):251–257. doi:10.1034/j.1399-3054.2002.1150211.x.
  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (‘Glycine max’l.). Plant Omics. 2012;5(2):60–67.
  • Janmohammadi M, Enayati V, Sabaghnia N. Impact of cold acclimation, de-acclimation and re-acclimation on carbohydrate content and antioxidant enzyme activities in spring and winter wheat. ICEL Agric Sci. 2012;25:3–11.
  • Ramanarayan K, Bhat A, Shripathi V, Swamy GS, Rao KS. Triacontanol inhibits both enzymatic and nonenzymatic lipid peroxidation. Phytochemistry. 2000;55(1):59–66. doi:10.1016/S0031-9422(00)00201-6.
  • Grzegorczyk I, Matkowski A, Wysokińska H. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem. 2007;104(2):536–541. doi:10.1016/j.foodchem.2006.12.003.
  • Swamy SG, Ramanarayan K, Inamdar LS, Inamdar SR. Triacontanol and jasmonic acid differentially modulate the lipid organization as evidenced by the fluorescent probe behavior and 31P nuclear magnetic resonance shifts in model membranes. J Membr Biol. 2009;228(3):165–177. doi:10.1007/s00232-009-9169-1.
  • Ding H, Ma D, Huang X, Hou J, Wang C, Xie Y, Wang Y, Qin H, Guo T. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiologiae Plantarum. 2019;41:1–11. doi:10.1007/s11738-019-2918-6.
  • Singh A, Kumar A, Yadav S, Singh IK. Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene. 2019;18:100173. doi:10.1016/j.plgene.2019.100173.
  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? Trends Plant Sci. 2011;16(6):300–309. doi:10.1016/j.tplants.2011.03.007.
  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere. 2015;120:154–164. doi:10.1016/j.chemosphere.2014.06.029.
  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot. 2013;64(7):1953–1966. doi:10.1093/jxb/ert055.
  • Ries SK, Wert V, Sweeley CC, Leavitt RA. Triacontanol: a new naturally occurring plant growth regulator. Science. 1977;195(4284):1339–1341. doi:10.1126/science.195.4284.1339.
  • Karam EA, Keramat B, Asrar Z, Mozafari H. Triacontanol-induced changes in growth, oxidative defense system in Coriander (Coriandrum sativum) under arsenic toxicity. Indian J Plant Physiol. 2016;21(2):137–142. doi:10.1007/s40502-016-0213-8.
  • Aghdam MS, Fard JR. Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria× anannasa cv. Selva) by enhancing GABA shunt activity. Food Chem. 2017;221:1650–1657. doi:10.1016/j.foodchem.2016.10.123.
  • Hu D, Ma G, Wang Q, Yao J, Wang YU, Pritchard HW, Wang X. Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L.) seeds during controlled deterioration. Plant, Cell & Environment. 2012;35(11):2045–2059. doi:10.1111/j.1365-3040.2012.02535.x.
  • Luo H, Zhou Z, Song G, Yao H, Han L. Antioxidant enzyme activity and microRNA are associated with growth of Poa pratensis callus under salt stress. Plant Biotechnol Rep. 2020;14(4):429–438. doi:10.1007/s11816-020-00620-x.
  • Yao W, Xu T, Farooq SU, Jin P, Zheng Y. Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharvest Biol Technol. 2018;144:20–28. doi:10.1016/j.postharvbio.2018.05.007.
  • Liu H, Wang J, Liu J, Liu T, Xue S. Hydrogen sulfide (H2S) signaling in plant development and stress responses. Abiotech. 2021;2(1):32–63. doi:10.1007/s42994-021-00035-4.
  • Perveen S, Shahbaz M, Ashraf M. Triacontanol-induced changes in growth, yield, leaf water relations, oxidative defense system, minerals, and some key osmoprotectants in Triticum aestivum under saline conditions. Turk J Bot. 2014;38(5):896–913. doi:10.3906/bot-1401-19.
  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. 2012. doi:10.4236/ajps.2012.310178.
  • Borowski E, Blamowski ZK. The effects of triacontanol ‘Tria’and Asahi SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Horticulturae. 2009;21(1):39–48. doi:10.2478/fhort-2013-0124.
  • Lesniak AP, Haug A, Ries SK. Stimulation of ATPase activity in barley (Hordeum vulgare) root plasma membrane after treatment of intact tissues and cell free extracts with triacontanol. Physiol Plant. 1986;68(1):20–26. doi:10.1111/j.1399-3054.1986.tb06590.x.
  • Lesniak AP, Ries SK. Changes in enzyme activity of corn seedlings after foliar application of triacontanol. J Plant Growth Regul. 1983;2(1):121–128. doi:10.1007/BF02042240.
  • Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53. doi:10.3389/fenvs.2014.00053.
  • Hasan MK, Liu C, Wang F, Ahammed GJ, Zhou J, Xu MX, Yu JQ, Xia XJ. Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere. 2016;161:536–545. doi:10.1016/j.chemosphere.2016.07.053.
  • Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell. 2005;17(7):1866–1875. doi:10.1105/tpc.105.033589.
  • Lum MS, Hanafi MM, Rafii YM, Akmar AS. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. JAPS: J Anim Plant Sci. 2014;24(5).
  • Shan C-J, Zhang SL, Li DF, Zhao YZ, Tian XL, Zhao XL, Wu YX, Wei XY, Liu RQ. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiologiae Plantarum. 2011;33(6):2533. doi:10.1007/s11738-011-0746-4.
  • Tiwari YK, Yadav SK. High temperature stress tolerance in maize (Zea mays L.): physiological and molecular mechanisms. J Plant Biol. 2019;62(2):93–102. doi:10.1007/s12374-018-0350-x.