1,731
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Loss-of-function of MEDIATOR 12 or 13 subunits causes the swelling of root hairs in response to sucrose and abscisic acid in Arabidopsis

, , & ORCID Icon
Article: 2191460 | Received 09 Jan 2023, Accepted 11 Mar 2023, Published online: 21 Mar 2023

References

  • Yu Q, Li P, Liang N, Wang H, Xu M, Wu S. Cell-fate specification in Arabidopsis roots requires coordinative action of lineage instruction and positional reprogramming. Plant Physiol. 2017;175(2):816–12. doi:10.1104/pp.17.00814.
  • Gumil S, Dunand C. Cell growth and differentiation in Arabidopsis epidermal cells. J Ext Bot. 2007;58(14):3829–3840. doi:10.1093/jxb/erm253.
  • Gilroy S, Jones D. Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 2000;5(2):56–60. doi:10.1016/S1360-1385(99)01551-4.
  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol. 2003;6(3):280–287. doi:10.1016/S1369-5266(03)00035-9.
  • Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodríguez LM, López-Bucio J. The role of microbial signals in plant growth and development. Plant Signal Behav. 2009;4(8):701–712. doi:10.4161/psb.4.8.9047.
  • Raya-González J, López-Bucio JS, López-Bucio J . Nitric oxide and hydrogen peroxide in root organogenesis. Nitric oxide and hydrogen peroxide signaling in higher plants. 1st ed. Springer Cham; 2019; p. 157–173.
  • Lombardo MC, Lamattina L. Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis. Nitric Oxide. 2018;80:89–97. doi:10.1016/j.niox.2018.09.002.
  • Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L. An ancient mechanism controls the development of cells with a rooting function in land plants. Science. 2007;316:1477–1480. doi:10.1126/science.1142618.
  • Shibata M, Sugimoto K. A gene regulatory network for root hair development. J Plant Res. 2019;132(3):301–309. doi:10.1007/s10265-019-01100-2.
  • Contreras-Cornejo HA, Macias-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009;149(3):1579–1592. doi:10.1104/pp.108.130369.
  • Paque S, Weijers D. Auxin: the plant molecule that influences almost anything. BMC Biol. 2016;14(1):67. doi:10.1186/s12915-016-0291-0.
  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol. 2002;130(4):1908–1917. doi:10.1104/pp.010546.
  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005;17(2):444–463. doi:10.1105/tpc.104.028316.
  • Li SB, Xie ZZ, Hu CG, Zhang JZ. A review of auxin response factors (ARFs) in plants. Front Plant Sci. 2016;7:47. doi:10.3389/fpls.2016.00047.
  • Masucci JD, Schiefelbein JW. The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through auxin-and-ethylene-associated process. Plant Physiol. 1994;106(4):1335–1346. doi:10.1104/pp.106.4.1335.
  • Aslam MM, Wassem M, Jakada BH, Okal EJ, Lei Z, Saqib HAS, Xu W, Zhang Q, Zhang Q. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int J Mol Sci. 2022;23(3):1084. doi:10.3390/ijms23031084.
  • Rymen B, Kawamura A, Schafer S, Breuer C, Iwase A, Shibata M, Ikeda M, Mitsuda N, Koncz C, Ohme-Takagi M, et al. ABA suppresses root hair growth via the OBP4 transcriptional regulator. Plant Physiol. 2017;173(3):1750–1762. doi:10.1104/pp.16.01945.
  • Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K. Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol. 2011;22(7):741–748. doi:10.1016/j.semcdb.2011.07.012.
  • Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS. The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis. Development. 2010;137(1):113–122. doi:10.1242/dev.043174.
  • Gillmor CS, Silva-Ortega CO, Willman MR, Buendía-Monreal M, Poethig RS. The Arabidopsis Mediator CDK8 module genes CCT (MED12) and GCT (MED13) are global regulators of developmental phase transitions. Development. 2014;141:4580–4589. doi:10.1242/dev.111229.
  • Raya-González J, López-Bucio JS, Prado-Rodríguez JC, Ruiz-Herrera LF, Guevara-García AA, López-Bucio J. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. Plant Mol Biol. 2017;95(1–2):141–156. doi:10.1007/s11103-017-0647-z.
  • Raya-González J, Ortiz-Castro R, Ruiz-Herrera LF, Kazan K, López-Bucio J. PHYTOCHROME and FLOWERING TIME1/MEDIATOR25 regulates lateral root formation via auxin signaling in Arabidopsis. Plant Physiol. 2014;165(2):880–894. doi:10.1104/pp.114.239806.
  • Raya-González J, Oropeza-Aburto A, López-Bucio JS, Guevara-García AA, De Veylder L, López-Bucio J, Herrera-Estrella L. MEDIATOR18 influences Arabidopsis root architecture, represses auxin signaling and is a critical factor for cell viability in root meristems. Plant J. 2018;96(5):909–985. doi:10.1111/tpj.14114.
  • Raya-González J, Ojeda-Rivera YO, Mora-Macias J, Oropeza-Aburto A, Ruiz-Herrera LF, López-Bucio J, Herrera-Estrella L. MEDIATOR 16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots. New Phytol. 2021;229(3):1278–1288. doi:10.1111/nph.16989.
  • Imura Y, Kobayashi Y, Yamamoto S, Furutani M, Tasaka M, Abe M, Araki T. CRYTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. Plant Cell Physiol. 2012;53(2):287–303. doi:10.1093/pcp/pcs002.
  • Malamy JE, Benfey PN. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 1997;124:33–44. doi:10.1242/dev.124.1.33.
  • Cheng WH, Endo A, Zhou L, Penney J, Chen H-C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell. 2002;14(11):2723–2743. doi:10.1105/tpc.006494.
  • Méndez-Bravo A, Raya-González J, Herrera-Estrella L, López-Bucio J. Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. Plant Cell Physiol. 2010;51(10):1612–1626. doi:10.1093/pcp/pcq117.
  • Barrera-Ortíz S, Garnica-Vergara A, Esparza-Reynoso S, García-Cardenas E, Raya-González J, Ruiz-Herrera LF, López-Bucio J. Jasmonic acid-ethylene crosstalk via ETHYLENE INSENSITIVE 2 reprograms Arabidopsis root system architecture through nitric oxide accumulation. J Plant Growth Regul. 2018;37(2):438–451. doi:10.1007/s00344-017-9741-3.
  • Kojima H, Nakatsubo N, Kikuchi K, Kawahuara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T. Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators: diaminofluoresceins. Anal Chem. 1998;70(13):2446–2453. doi:10.1021/ac9801723.
  • Toro-De León G D, García-Aguilar M, Gillmor CS. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature. 2014;514(7524):624–627. doi:10.1038/nature13620.
  • Price J, Li TC, Kang SG, Na JK, Jang JC. Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol. 2003;132(3):1424–1438. doi:10.1104/pp.103.020347.
  • Dekkers BJ, Schuurmans JA, Smeekens S. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol. 2008;67(1–2):151–167. doi:10.1007/s11103-008-9308-6.
  • Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Dolan L, Dolan L. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev. 2001;15(1):79–89. doi:10.1101/gad.188801.
  • Howles PA, Birch RJ, Collings DA, Gebbie LK, Hurley UA, Hocart CH, Arioli T, Williamson RE. A mutation in an Arabidopsis ribose 5‐phosphate isomerase reduces cellulose synthesis and is rescued by exogenous uridine. Plant J. 2006;48(4):606–618. doi:10.1111/j.1365-313X.2006.02902.x.
  • Singh SK, Fischer U, Singh M, Grebe M, Marchant A. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana. BMC Plant Biol. 2008;8(1):57. doi:10.1186/1471-2229-8-57.
  • Tsang DL, Edmond C, Harrington JL, Nühse TS. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol. 2011;156(2):596–604. doi:10.1104/pp.111.175372.
  • Sieberer BJ, Ketelaar T, Esseling JJ, Emons AM. Microtubules guide root hair tip growth. New Phytol. 2005;167(3):711–719. doi:10.1111/j.1469-8137.2005.01506.x.
  • Šamaj J, Müller J, Beck M, Böhm N, Menzel D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006;11(12):594–600. doi:10.1016/j.tplants.2006.10.002.
  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. Embo J. 2001;20(11):2779–2788. doi:10.1093/emboj/20.11.2779.
  • Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell. 2002;14(4):763–776. doi:10.1105/tpc.010359.
  • Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Yalovsky S, Yalovsky S. Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell. 2005;16(4):1913–1927. doi:10.1091/mbc.e04-07-0562.
  • Yang G, Gao P, Zhang H, Huang S, Zheng ZL, Grebe M. A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS One. 2007;2(10):e1074. doi:10.1371/journal.pone.0001074.
  • Lombardo MC, Graziano M, Polacco JC, Lamattina L. Nitric oxide functions as a positive regulator of root hair development. Plant Signal Behav. 2006;1(1):28–33. doi:10.4161/psb.1.1.2398.
  • Lombardo MC, Lamattina L. Nitric oxide is essential for vesicle formation and trafficking in Arabidopsis root hair growth. J Ext Bot. 2012;63(13):4875–4885. doi:10.1093/jxb/ers166.
  • Pasrija R, Thakur JK. Analysis of differential expression of Mediator subunit genes in Arabidopsis. Plant Signal Behav. 2012;7(12):1676–1686. doi:10.4161/psb.22438.
  • Esparza-Reynoso S, Ruiz-Estrella LF, Pelagio-Flores R, Macias-Rodríguez LI, Martínez-Trujillo M, López-Coria M, Sánchez-Nieto S, Herrera-Estrella A, López-Bucio J. Trichoderma atroviride -emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. Plant Cell Environ. 2021;44(6):1961–1976. doi:10.1111/pce.14014.
  • Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J. 2005;41(2):319–331. doi:10.1111/j.1365-313X.2004.02298.x.