2,262
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

ETI signaling nodes are involved in resistance of Hawaii 7996 to Ralstonia solanacearum-induced bacterial wilt disease in tomato

, , , , , , & ORCID Icon show all
Article: 2194747 | Received 19 Dec 2022, Accepted 20 Mar 2023, Published online: 30 Mar 2023

References

  • Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol. 2013;14:651–9. doi:10.1111/mpp.12038.
  • Lowe-Power TM, Khokhani D, Allen C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol. 2018;26:929–942. doi:10.1016/j.tim.2018.06.002.
  • Huet G. Breeding for resistances to Ralstonia solanacearum. Front Plant Sci. 2014;5:715. doi:10.3389/fpls2014.00715.
  • Kim N, Kang W-H, Lee J, Yeom S-I. Development of clustered resistance gene analogs-based markers of resistance to Phytophthora capsiciin. Chili Pepper BioMed Res Inter. 2019;2019:1–12. doi:10.1155/2019/1093186.
  • Prior P, Bart S, Leclercq S, Darrasse A, Anais G. Resistance to bacterial wilt in tomato as discerned by spread of Pseudomonas (Burholderia) solanacearum in the stem tissues. null. 1996;45:720–726. doi:10.1046/j.1365-3059.1996.d01-9.x.
  • Mcgarvey JA, Denny TP, Schell MA. Spatial-temporal and quantitative analysis of growth and EPS I production by Ralstonia solanacearum in resistant and susceptible tomato cultivars. Phytopathology. 1999;89:1233–1239. doi:10.1094/PHYTO.1999.89.12.1233.
  • Grimault V, Prior P. Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum. null. 2010;42:589–594. doi:10.1111/j.1365-3059.1993.tb01539.x.
  • Planas-Marques M, Kressin JP, Kashyap A, Panthee DR, Louws FJ, Coll NS. Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. J Exp Bot. 2020;71:2157–2171. doi:10.1093/jxb/erz562.
  • French E, Kim BS, Rivera-Zuluaga K, Iyer-Pascuzzi AS. Whole root transcriptomic analysis suggests a role for auxin pathways in resistance to Ralstonia solanacearum in tomato. Mol Plant Microbe Interact. 2018;31:432–444. doi:10.1094/MPMI-08-17-0209-R.
  • Wang JF, Olivier J, Thoquet P, Mangin B, Grimsley NH. Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact. 2000;13:6–13. doi:10.1094/MPMI.2000.13.1.6.
  • Wang J-F, F-I H, Truong HTH, Huang S-M, Balatero CH, Dittapongpitch V. Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica. 2013;190:241–252. doi:10.1007/s10681-012-0830-x.
  • Kim B, Hwang IS, Lee HJ, Lee JM, Seo E, Choi D, Oh C-S. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. Theor Appl Genet. 2018;131:1017–1030. doi:10.1007/s00122-018-3054-1.
  • Ngou BPM, Jones JDG, Ding P. Plant immune networks. Trends Plant Sci. 2022;27:255–273. doi:10.1016/j.tplants.2021.08.012.
  • Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant. 2015;8:521–539. doi:10.1016/j.molp.2014.12.022.
  • de Azevedo Manhães Am E, Ortiz-Morea FA, He P, Shan L. Plant plasma membrane-resident receptors: surveillance for infections and coordination for growth and development. J Integr Plant Biol. 2021;63:79–101. doi:10.1111/jipb.13051.
  • Lu Y, Tsuda K. Intimate association of PRR- and NLR-Mediated signaling in plant immunity. Mol Plant Microbe Interact. 2021;34:3–14. doi:10.1094/MPMI-08-20-0239-IA.
  • Catanzariti AM, Do HT, Bru P, de Sain M, Thatcher LF, Rep M, Jones DA. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. Plant J. 2017;89:1195–1209. doi:10.1111/tpj.13458.
  • Zhou JM, Zhang Y. Plant immunity: danger perception and signaling. Cell. 2020;181:978–989. doi:10.1016/j.cell.2020.04.028.
  • Yuan M, Ngou BPM, Ding P, Xin XF. PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol. 2021;62:102030. doi:10.1016/j.pbi.2021.102030.
  • Jones JD, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and animals. Science. 2016;354:354. doi:10.1126/science.aaf6395.
  • Pruitt RN, Locci F, Wanke F, Zhang L, Saile SC, Joe A, Karelina D, Hua C, Fröhlich K, Wan W-L, et al. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature. 2021;598:495–499. doi:10.1038/s41586-021-03829-0.
  • Century KS, Holub EB, Staskawicz BJ. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci U S A. 1995;92:6597–6601. doi:10.1073/pnas.92.14.6597.
  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A. 1998;95:10306–10311. doi:10.1073/pnas.95.17.10306.
  • Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell. 2005;17:2601–2613. doi:10.1105/tpc.105.033910.
  • Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Corina Vlot A, Feys BJ, Niefind K, Parker JE. Different roles of enhanced disease susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol. 2011;191:107–119. doi:10.1111/j.1469-8137.2011.03675.x.
  • Sun X, Lapin D, Feehan JM, Stolze SC, Kramer K, Dongus JA, Rzemieniewski J, Blanvillain-Baufumé S, Harzen A, Bautor J, et al. Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat Commun. 2021;12:3335. doi:10.1038/s41467-021-23614-x.
  • Lapin D, Kovacova V, Sun X, Dongus JA, Bhandari D, von Born P, Bautor J, Guarneri N, Rzemieniewski J, Stuttmann J, et al. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-Domain immune receptors. Plant Cell. 2019;31:2430–2455. doi:10.1105/tpc.19.00118.
  • Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho M-J, Schultink A, Staskawicz BJ. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. Proc Natl Acad Sci U S A. 2018;115:E10979–87. doi:10.1073/pnas.1814856115.
  • Lapin D, Bhandari DD, Parker JE. Origins and immunity networking functions of EDS1 family proteins. Annu Rev Phytopathol. 2020;58:253–276. doi:10.1146/annurev-phyto-010820-012840.
  • Dongus JA, Parker JE. EDS1 signalling: at the nexus of intracellular and surface receptor immunity. Curr Opin Plant Biol. 2021;62:102039. doi:10.1016/j.pbi.2021.102039.
  • Ishihara T, Mitsuhara I, Takahashi H, Nakaho K, Zhang Z. Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. Plos One. 2012;7:e46763. doi:10.1371/journal.pone.0046763.
  • Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng C-P. Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant. 2009;136:324–335. doi:10.1111/j.1399-3054.2009.01226.x.
  • Nakaho K, Seo S, Ookawa K, Inoue Y, Ando S, Kanayama Y, Miyashita S, Takahashi H. Involvement of a vascular hypersensitive response in quantitative resistance to Ralstonia solanacearum on tomato rootstock cultivar LS-89. null. 2017;66:150–158. doi:10.1111/ppa.12547.
  • Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci U S A. 2011;108:16463–16468. doi:10.1073/pnas.1113726108.
  • Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, Li X. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytol. 2019;222:938–953. doi:10.1111/nph.15665.
  • Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. 2019;222:966–980. doi:10.1111/nph.15659.
  • Ngou BPM, Ahn HK, Ding P, Jones JDG. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. 2021;592:110–115. doi:10.1038/s41586-021-03315-7.
  • Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou J-M, He SY, Xin X-F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature. 2021;592:105–109. doi:10.1038/s41586-021-03316-6.