2,708
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Effect of interfering TOR signaling pathway on the biosynthesis of terpenoids in Salvia miltiorrhiza Bge

, , , & ORCID Icon
Article: 2199644 | Received 10 Feb 2023, Accepted 20 Mar 2023, Published online: 11 Apr 2023

References

  • Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014;7(8):1267–15. doi:10.1093/mp/ssu049.
  • Figueroa-Macías JP, García YC, Núñez M, Díaz K, Olea AF, Espinoza L. Plant growth-defense trade-offs: molecular processes leading to physiological changes. Int J Mol Sci. 2021;22(2):693. doi:10.3390/ijms22020693.
  • Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. TOR signaling and nutrient sensing. Annu Rev Plant Biol. 2016;67(1):261–285. doi:10.1146/annurev-arplant-043014-114648.
  • Burkart GM, Brandizzi F. A tour of TOR complex signaling in plants. Trends Biochem Sci. 2021;46(5):417–428. doi:10.1016/j.tibs.2020.11.004.
  • Quilichini TD, Gao P, Pandey PK, Xiang D, Ren M, Datla R. A role for TOR signaling at every stage of plant life. J Exp Bot. 2019;70(8):2285–2296. doi:10.1093/jxb/erz125.
  • Fu L, Wang P, Xiong Y. Target of rapamycin signaling in plant stress responses. Plant Physiol. 2020;182(4):1613–1623. doi:10.1104/pp.19.01214.
  • Haq SIU, Shang J, Xie H, Qiu Q-S. Roles of TOR signaling in nutrient deprivation and abiotic stress. J Plant Physiol. 2022;274:153716. doi:10.1016/j.jplph.2022.153716.
  • Zhao Y, Wang X-Q. The hot issue: TOR signalling network in plants. Funct Plant Biol. 2020;48(1):1–7. doi:10.1071/FP20071.
  • Xiong F, Dong P, Liu M, Xie G, Wang K, Zhuo F, Feng L, Yang L, Li Z, Ren M. Tomato FK506 binding protein 12KD (FKBP12) mediates the interaction between rapamycin and Target of Rapamycin (TOR). Front Plant Sci. 2016;7:1746. doi:10.3389/fpls.2016.01746.
  • Montané M-H, Menand B. TOR inhibitors: from mammalian outcomes to pharmacogenetics in plants and algae. J Exp Bot. 2019;70(8):2297–2312. doi:10.1093/jxb/erz053.
  • Montané M-H, Menand B. ATP-Competitive MTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J Exp Bot. 2013;64(14):4361–4374. doi:10.1093/jxb/ert242.
  • Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, Ren M. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in arabidopsis. Front Plant Sci. 2015;6:677. doi:10.3389/fpls.2015.00677.
  • Xiong F, Zhang R, Meng Z, Deng K, Que Y, Zhuo F, Feng L, Guo S, Datla R, Ren M. Brassinosteroid insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in arabidopsis. New Phytol. 2017;213(1):233–249. doi:10.1111/nph.14118.
  • Song Y, Zhao G, Zhang X, Li L, Xiong F, Zhuo F, Zhang C, Yang Z, Datla R, Ren M, et al. The crosstalk between Target of Rapamycin (TOR) and Jasmonic Acid (JA) signaling existing in Arabidopsis and cotton. Sci Rep. 2017;7(1):45830. doi:10.1038/srep45830.
  • Li D, Ding Y, Cheng L, Zhang X, Cheng S, Ye Y, Gao Y, Qin Y, Liu Z, Li C, et al. Target of Rapamycin (TOR) regulates the response to low nitrogen stress via autophagy and hormone pathways in Malus hupehensis. Hortic Res. 2022;9. uhac143. doi:10.1093/hr/uhac143.
  • Tetali SD. Terpenes and isoprenoids: a wealth of compounds for global use. Planta. 2019;249(1):1–8. doi:10.1007/s00425-018-3056-x.
  • Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol. 2015;148:63–106. doi:10.1007/10_2014_295.
  • Karunanithi PS, Zerbe P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front Plant Sci. 2019;10:1166. doi:10.3389/fpls.2019.01166.
  • Tarkowská D, Strnad M. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta. 2018;247(5):1051–1066. doi:10.1007/s00425-018-2878-x.
  • Ying L, Min L, Zhuyun Y, Huiqing X, Xiaofeng S, Li Z. Comparison of fast breeding and regeneration seedling traits of Salvia Miltiorrhiza from different geographical seed sources. Jiangsu Agricultural Sciences, 2016, 44 (10), 103–107. 10.15889/j.issn.1002-1302.2016.10.024.
  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–890. doi:10.1093/bioinformatics/bty560.
  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652. doi:10.1038/nbt.1883.
  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi:10.1186/1471-2105-12-323.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(suppl_2):W316–322. doi:10.1093/nar/gkr483.
  • Kumar L, Futschik ME. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007;2(1):5–7. doi:10.6026/97320630002005.
  • Jun Z. Cluster GVis: one-step to cluster and visualize gene expression matrix. 2022.
  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102.
  • Liu R, Zou P, Yan Z-Y, Chen X. Identification, classification, and expression profile analysis of heat shock transcription factor gene family in Salvia Miltiorrhiza. PeerJ. 2022;10:e14464. doi:10.7717/peerj.14464.
  • Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendra S, et al. Target of rapamycin signaling regulates metabolism, growth, and life span in arabidopsis. Plant Cell. 2012;24(12):4850–4874. doi:10.1105/tpc.112.107144.
  • De Vleesschauwer D, Filipe O, Hoffman G, Seifi HS, Haeck A, Canlas P, Van Bockhaven J, De Waele E, Demeestere K, Ronald P, et al. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants. New Phytol. 2018;217(1):305–319. doi:10.1111/nph.14785.
  • Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P. TOR dynamically regulates plant cell–cell transport. Proc Natl Acad Sci U S A. 2020;117(9):5049–5058. doi:10.1073/pnas.1919196117.
  • Zhu T, L L, H H, Zhan J, Ren M. Target of rapamycin regulates photosynthesis and cell growth in auxenochlorella pyrenoidosa. Int J Mol Sci. 2022;23(19):19. doi:10.3390/ijms231911309.
  • Margalha L, Confraria A, Baena-González E. SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses. J Exp Bot. 2019;70(8):2261–2274. doi:10.1093/jxb/erz066.
  • Bohlmann J, Keeling CI. Terpenoid Biomaterials. Plant J. 2008;54(4):656–669. doi:10.1111/j.1365-313X.2008.03449.x.
  • Moses T, Pollier J, Thevelein JM, Goossens A. Bioengineering of plant (Tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol. 2013;200(1):27–43. doi:10.1111/nph.12325.
  • Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, et al. Analysis of the genome sequence of the medicinal plant Salvia Miltiorrhiza. Mol Plant. 2016;9(6):949–952. doi:10.1016/j.molp.2016.03.010.
  • Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–324. doi:10.1016/j.cell.2016.08.029.
  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants (Basel). 2022;11(13):1620. doi:10.3390/plants11131620.
  • Barrero JM, Rodríguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL. Both Abscisic Acid (ABA)-dependent and ABA-Independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ. 2006;29(10):2000–2008. doi:10.1111/j.1365-3040.2006.01576.x.
  • Finkelstein R. Abscisic acid synthesis and response. Arabidopsis Book. 2013;11:e0166. doi:10.1199/tab.0166.
  • Li L, Zhu T, Song Y, Feng L, Farag EAH, Ren M. ABSCISIC ACID INSENSITIVE5 Interacts with RIBOSOMAL S6 KINASE2 to mediate ABA responses during seedling growth in arabidopsis. Front Plant Sci. 2020;11:598654. doi:10.3389/fpls.2020.598654.
  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24(13):2452. doi:10.3390/molecules24132452.
  • Lu S. Biosynthesis and regulatory mechanisms of bioactive compounds in Salvia Miltiorrhiza, a model system for medicinal plant biology. Crit Rev Plant Sci. 2021;40(3):243–283. doi:10.1080/07352689.2021.1935719.
  • Kai G, Liu S, Shi M, Han B, Hao X, Liu Z. Biochemistry, biosynthesis, and medicinal properties of phenolic acids in Salvia Miltiorrhiza. In: Lu S, editor. The Salvia miltiorrhiza Genome. Cham: Springer International Publishing; 2019. pp. 141–162. doi:10.1007/978-3-030-24716-4_11.
  • Liu Y, Xiong Y. Plant target of rapamycin signaling network: complexes, conservations, and specificities. J Integr Plant Biol. 2022;64(2):342–370. doi:10.1111/jipb.13212.
  • McCready K, Spencer V, Kim M. The importance of TOR kinase in plant development. Front Plant Sci. 2020;11:16. doi:10.3389/fpls.2020.00016.
  • Ma D, Constabel CP. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends Plant Sci. 2019;24(3):275–289. doi:10.1016/j.tplants.2018.12.003.
  • Ng DW-K, Abeysinghe JK, Kamali M. Regulating the regulators: the control of transcription factors in plant defense signaling. Int J Mol Sci. 2018;19(12):E3737. doi:10.3390/ijms19123737.
  • Wu S, Zhu B, Qin L, Rahman K, Zhang L, Han T. Transcription factor: a powerful tool to regulate biosynthesis of active ingredients in Salvia Miltiorrhiza. Front Plant Sci. 2021;12:622011. doi:10.3389/fpls.2021.622011.
  • Deng C, Hao X, Shi M, Fu R, Wang Y, Zhang Y, Zhou W, Feng Y, Makunga NP, Kai G. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia Miltiorrhiza hairy roots. Plant Sci. 2019;284:1–8. doi:10.1016/j.plantsci.2019.03.007.
  • Hao X, Pu Z, Cao G, You D, Zhou Y, Deng C, Shi M, Nile SH, Wang Y, Zhou W, et al. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia Miltiorrhiza Hairy Roots. J Adv Res. 2020;23:1–12. doi:10.1016/j.jare.2020.01.012.
  • Ding K, Pei T, Bai Z, Jia Y, Ma P, Liang Z. SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia Miltiorrhiza hairy roots. Sci Rep. 2017;7(1):5104. doi:10.1038/s41598-017-04909-w.
  • Li S, Wu Y, Kuang J, Wang H, Du T, Huang Y, Zhang Y, Cao X, Wang Z. SmMYB111 is a key factor to phenolic acid biosynthesis and interacts with both SmTTG1 and SmbHLH51 in Salvia Miltiorrhiza. J Agric Food Chem. 2018;66(30):8069–8078. doi:10.1021/acs.jafc.8b02548.