2,302
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Genome-wide identification of the glutamate receptor-like gene family in Vanilla planifolia and their response to Fusarium oxysporum infection

&
Article: 2204654 | Received 28 Jan 2023, Accepted 21 Mar 2023, Published online: 25 Apr 2023

References

  • Sheng M, Nakagawa T. Glutamate receptors on the move. Nature. 2002;417:601–12. doi:10.1038/417601a.
  • Watkins JC, Jane DE. The glutamate story. Br J Pharmacol. 2006;147:S100–108. doi:10.1038/sj.bjp.0706444.
  • Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G. Glutamate-receptor genes in plants. Nature. 1998;396:125–126. doi:10.1038/24066.
  • Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G. Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol. 1999;16:826–838. doi:10.1093/oxfordjournals.molbev.a026167.
  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novère N, Nam HG, Spalding EP, et al. The identity of plant glutamate receptors. Science. 2001;292:1486–1487. doi:10.1126/science.292.5521.1486b.
  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Gilliham M, Liu LH, Obermeyer G, Feijó JA. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science. 2011;332:434–437. doi:10.1126/science.1201101.
  • Yu B, Sun Y, Jin X, Xie Z, Li X, Huang J. Rice glutamate receptor-like channel OsGLR3.4 modulates the root tropism growth towards amino acids via plasma membrane depolarization and ROS generation. Environ Exp Bot. 2023;205:105146. doi:10.1016/j.envexpbot.2022.105146.
  • Kang J, Turano FJ. The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2003;100:6872–6877. doi:10.1073/pnas.1030961100.
  • Chen PY, Hsu CY, Lee CE, Chang IF. Arabidopsis glutamate receptor GLR3.7 is involved in abscisic acid response. Plant Signaling & Behavior. 2021;16:1997513. doi:10.1080/15592324.2021.1997513.
  • Zheng Y, Luo L, Wei J, Chen Q, Yang Y, Hu X, Kong X. The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana. Biochem Biophys Res Commun. 2018;506:895–900. doi:10.1016/j.bbrc.2018.10.153.
  • Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Wang C, Wang W, Wang G, Liu M, et al. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. Plant Cell Rep. 2014;33:617–631. doi:10.1007/s00299-014-1586-7.
  • Zhang J, Cui T, Su Y, Zang S, Zhao Z, Zhang C, Zou W, Chen Y, Cao Y, Chen Y, et al. Genome-wide identification, characterization, and expression analysis of glutamate receptor-like gene (GLR) family in sugarcane. Plants (Basel). 2022;11:2440. doi:10.3390/plants11182440.
  • Bjornson M, Pimprikar P, Nürnberger T, Zipfel C. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nature Plants. 2021;7(5):579–586. doi:10.1038/s41477-021-00874-5.
  • Feng S, Pan C, Ding S, Ma Q, Hu C, Wang P, Shi K. The glutamate receptor plays a role in defense against Botrytis cinerea through electrical signaling in tomato. Appl Sci. 2021;11(23):11217. doi:10.3390/app112311217.
  • Yeh CH, Chen KY, Chou CY, Liao HY, Chen HC. New insights on volatile components of Vanilla planifolia cultivated in Taiwan. Molecules. 2021;26:3608. doi:10.3390/molecules26123608.
  • Bythrow JD. Vanilla as a medicinal plant. Semin Integr Med. 2005;3:129–131. doi:10.1016/j.sigm.2006.03.001.
  • Gallage NJ, Møller BL. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant. 2015;8:40–57. doi:10.1016/j.molp.2014.11.008.
  • Buccellato F. Vanilla in perfumery and beverage flavors. In: Havkin-Frenkel D Belanger FC, editors. Handbook of vanilla science and technology. New York: Wiley; 2011. pp. 367–373.
  • Pinaria AG, Liew ECY, Burgess LW. Fusarium species associated with vanilla stem rot in Indonesia. Austral Plant Pathol. 2010;39:176–183. doi:10.1071/AP09079.
  • Solano-De la Cruz MT, Adame-García J, Gregorio-Jorge J, Jiménez-Jacinto V, Vega-Alvarado L, Iglesias-Andreu LG, Escobar-Hernández EE, Luna-Rodríguez M. Functional categorization of de novo transcriptome assembly of Vanilla planifolia Jacks. potentially points to a translational regulation during early stages of infection by Fusarium oxysporum f. sp. vanillae. BMC Genom. 2019;20:826. doi:10.1186/s12864-019-6229-5.
  • Carbajal-Valenzuela IA, Muñoz-Sanchez AH, Hernández-Hernández J, Barona-Gómez F, Truong C, Cibrián-Jaramillo A. Microbial diversity in cultivated and feral Vanilla planifolia orchids affected by stem and rot disease. Microb Ecol. 2022;84:821–833. doi:10.1007/s00248-021-01876-8.
  • Nakamura T, Yamada KD, Tomii K, Katoh K, Hancock J. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics. 2018;34:2490–2492. doi:10.1093/bioinformatics/bty121.
  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R, Teeling E. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi:10.1093/molbev/msaa015.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K, MEGA X, Battistuzzi FU. Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. doi:10.1093/molbev/msy096.
  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, et al. Expasy: sIB bioinformatics resource portal. Nucleic Acids Res. 2012;40(web server issue):W597–603. doi:10.1093/nar/gks400.
  • Huang F, Abbas F, Fiaz S, Imran M, Yanguo K, Hassan W, Ashraf U, He Y, Cai X, Wang Z, et al. Comprehensive characterization of guanosine monophosphate synthetase in Nicotiana tabacum. Mol Biol Rep. 2022;49:5265–5272. doi:10.1007/s11033-021-06718-x.
  • Möller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001;17:646–653. doi:10.1093/bioinformatics/17.7.646.
  • Chao J, Yingzhen K, Wang Q, Yuhe S, Daping G, Lv J, Guanshan L. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Hereditas (Beijing). 2015;37:91–97.
  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi:10.1093/nar/gkr1293.
  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(web server issue):W202–208. doi:10.1093/nar/gkp335.
  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–1297. doi:10.1093/bioinformatics/btu817.
  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–327. doi:10.1093/nar/30.1.325.
  • Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldón T, Rattei T, Creevey C, Kuhn M, et al. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 2014;42:D231–239. doi:10.1093/nar/gkt1253.
  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi:10.1016/j.molp.2020.06.009.
  • Rao X, Krom N, Tang Y, Widiez T, Havkin-Frenkel D, Belanger FC, Dixon RA, Chen F. A deep transcriptomic analysis of pod development in the vanilla orchid (Vanilla planifolia). BMC Genomics. 2014;15(1):964. doi:10.1186/1471-2164-15-964.
  • Grenzi M, Bonza MC, Costa A. Signaling by plant glutamate receptor-like channels: what else! Curr Opin Plant Biol. 2022;68:102253. doi:10.1016/j.pbi.2022.102253.
  • Alfieri A, Doccula FG, Pederzoli R, Grenzi M, Bonza MC, Luoni L, Candeo A, Romano Armada N, Barbiroli A, Valentini G, et al. The structural bases for agonist diversity in an Arabidopsis thaliana glutamate receptor-like channel. Proc Natl Acad Sci U S A. 2020;117:752–760. doi:10.1073/pnas.1905142117.
  • Hernández-Coronado M, Dias Araujo PC, Ip PL, Nunes CO, Rahni R, Wudick MM, Lizzio MA, Feijó JA, Birnbaum KD. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev Cell. 2022;57:451–465.e6. doi:10.1016/j.devcel.2022.01.013.
  • Aouini A, Matsukura C, Ezura H, Asamizu E. Characterisation of 13 glutamate receptor-like genes encoded in the tomato genome by structure, phylogeny and expression profiles. Gene. 2012;493:36–43. doi:10.1016/j.gene.2011.11.037.
  • Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM. Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol. 2002;19:1066–1082. doi:10.1093/oxfordjournals.molbev.a004165.
  • Chen J, Jing Y, Zhang X, Li L, Wang P, Zhang S, Zhou H, Wu J. Evolutionary and expression analysis provides evidence for the plant glutamate-like receptors family is involved in woody growth-related function. Sci Rep. 2016;6:32013. doi:10.1038/srep32013.
  • Zhou SH, Zhang L, Lü XZ, Huang JG. Identification and analysis of GLR family genes in maize. J Maize Sci. 2021;2:35–42.
  • Yang L, Zhao Y, Wu X, Zhang Y, Fu Y, Duan Q, Ma W, Huang J. Genome-wide identification and expression analysis of BraGLRs reveal their potential roles in abiotic stress tolerance and sexual reproduction. Cells. 2022;11:3729. doi:10.3390/cells11233729.
  • Teardo E, Carraretto L, De Bortoli S, Costa A, Behera S, Wagner R, Lo Schiavo F, Formentin E, Szabo I. Alter-native splicing-mediated targeting of the Arabidopsis glutamate RECEPTOR3.5 to mitochondria affects organelle morphology. Plant Physiol. 2015;167:216–227. doi:10.1104/pp.114.242602.
  • Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci U S A. 2018;115:10178–10183. doi:10.1073/pnas.1807049115.
  • Teardo E, Segalla A, Formentin E, Zanetti M, Marin O, Giacometti GM, Lo Schiavo F, Zoratti M, Szabò I. Characterization of a plant glutamate receptor activity. Cell Physiol Biochem. 2010;26:253–262. doi:10.1159/000320525.
  • Teardo E, Formentin E, Segalla A, Giacometti GM, Marin O, Zanetti M, Lo Schiavo F, Zoratti M, Szabò I. Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane. Biochim Biophys Acta. 2011;1807:359–367. doi:10.1016/j.bbabio.2010.11.008.
  • Lallemand T, Leduc M, Landès C, Rizzon C, Lerat E. An overview of duplicated gene detection methods: why the duplication mechanism has to be accounted for in their choice. Genes. 2020;11–1046. doi:10.3390/genes11091046.
  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4:10. doi:10.1186/1471-2229-4-10.
  • Tanaka KM, Takahasi KR, Takano-Shimizu T. Enhanced fixation and preservation of a newly arisen duplicate gene by masking deleterious loss-of-function mutations. Genet Res (Camb). 2009;91:267–280. doi:10.1017/S0016672309000196.
  • Li F, Wang J, Ma C, Zhao Y, Wang Y, Hasi A, Qi Z. Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis. Plant Physiol. 2013;162:1497–1509. doi:10.1104/pp.113.217208.
  • Manzoor H, Kelloniemi J, Chiltz A, Wendehenne D, Pugin A, Poinssot B, Garcia-Brugger A. Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. Plant J. 2013;76:466–480. doi:10.1111/tpj.12311.
  • Kang S, Kim HB, Lee H, Choi JY, Heu S, Oh CJ, Kwon SI, An CS. Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection. Mol Cells. 2006;21:418–427.
  • Liu S, Zhang X, Xiao S, Ma J, Shi W, Qin T, Xi H, Nie X, You C, Xu Z, et al. A single-nucleotide mutation in a glutamate RECEPTOR-LIKE gene confers resistance to fusarium wilt in Gossypium hirsutum. Adv Sci (Weinh). 2021;8:2002723.