1,478
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Genome-wide analysis of the CDPK gene family and their important roles response to cold stress in white clover

, , , , , , & ORCID Icon show all
Article: 2213924 | Received 13 Mar 2023, Accepted 15 Apr 2023, Published online: 18 May 2023

References

  • Yang YX, Ahammed GJ, Wu C, Fan SY, Zhou YH. Crosstalk among Jasmonate, Salicylate and Ethylene signaling pathways in plant disease and immune responses. curr Protein Pept Sci. 2015;16(5):450–13. doi:10.2174/1389203716666150330141638.
  • Harper JF, Breton G, Harmon A. DECODING Ca2+SIGNALS THROUGH PLANT PROTEIN KINASES. Annu Rev Plant Biol. 2004;55(1):263–288. doi:10.1146/annurev.arplant.55.031903.141627.
  • Li A, Wang X, Leseberg CH, Jia J, Mao L. Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav. 2008;3(9):654–656. doi:10.4161/psb.3.9.5757.
  • Evans NH, McAinsh MR, Hetherington AM. Calcium oscillations in higher plants. Curr Opin Plant Biol. 2001;4(5):415–420. doi:10.1016/S1369-5266(00)00194-1.
  • Harmon AC. Calcium-regulated protein kinases of plants. Gravit Space Biol Bull. 2003;16:83–90.
  • Cheng SH, Willmann MR, Chen HC, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 2002;129(2):469–485. doi:10.1104/pp.005645.
  • Ludwig AA, Romeis T, Jones JD. CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot. 2004;55(395):181–188. doi:10.1093/jxb/erh008.
  • Harmon AC, Gribskov M, Harper JF. Cdpks – a kinase for every Ca2+ signal? Trends Plant Sci. 2000;5(4):154–159. doi:10.1016/S1360-1385(00)01577-6.
  • Asano T, Hayashi N, Kikuchi S, Ohsugi R. CDPK-mediated abiotic stress signaling. Plant Signal Behav. 2012;7(7):817–821. doi:10.4161/psb.20351.
  • Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science. 1991;252(5008):951–954. doi:10.1126/science.1852075.
  • Dekomah SD, Bi Z, Dormatey R, Wang Y, Haider FU, Sun C, Yao P, Bai J. The role of CDPKs in plant development, nutrient and stress signaling. Front Genet. 2022;13:996203. doi:10.3389/fgene.2022.996203.
  • Romeis T, Piedras P, Jones JD. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell. 2000;12(5):803–815. doi:10.1105/tpc.12.5.803.
  • Romeis T, Ludwig AA, Martin R, Jones JD. Calcium-dependent protein kinases play an essential role in a plant defence response. Embo J. 2001;20(20):5556–5567. doi:10.1093/emboj/20.20.5556.
  • Tzen M, Benarous R, Dupouy-Camet J, Roisin MP. A novel Toxoplasma gondii calcium-dependent protein kinase. Parasite. 2007;14(2):141–147. doi:10.1051/parasite/2007142141.
  • Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. Plant Cell Physiol. 2014;55(3):551–569. doi:10.1093/pcp/pct200.
  • Dong H, Wu C, Luo C, Wei M, Qu S, Wang S, Sassa H. Overexpression of MdCPK1a gene, a calcium dependent protein kinase in apple, increase tobacco cold tolerance via scavenging ROS accumulation. PLos One. 2020;15(11):e0242139. doi:10.1371/journal.pone.0242139.
  • Xiao XH, Yang M, Sui JL, Qi JY, Fang YJ, Hu SN, Tang C-R. The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. FEBS Open Bio. 2017;7(1):4–24. doi:10.1002/2211-5463.12163.
  • Mathew S, Supriya RTA. Molecular characterization and gene expression of CDPK genes under low temperature stress in Hevea brasiliensis. Xl Finnish Plant Science Days. 2016.
  • Wang JP, Xu YP, Munyampundu JP, Liu TY, Cai XZ. Calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genome-wide identification and functional analyses in disease resistance. Mol Genet Genomics. 2016;291(2):661–676. doi:10.1007/s00438-015-1137-0.
  • Wang Z, Li J, Jia C, Xu B, Jin Z. Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuninata L.AAA group,cv. S Afr J Bot. 2016;104:134–141. doi:10.1016/j.sajb.2015.10.004.
  • Zhang K, Han YT, Zhao FL, Hu Y, Gao YR, Ma YF, Zheng Y, Wang Y-J, Wen Y-Q. Genome-wide identification and expression analysis of the CDPK gene family in grape, vitis spp. BMC Plant Biol. 2015;15(1):164. doi:10.1186/s12870-015-0552-z.
  • Crizel RL, Perin EC, Vighi IL, Woloski R, Seixas A, da Silva Pinto L, Rombaldi CV, Galli V. Genome-wide identification, and characterization of the CDPK gene family reveal their involvement in abiotic stress response in Fragaria x ananassa. null. 2020;10(1):11040. doi:10.1038/s41598-020-67957-9.
  • Ullah I, Ansari HA, Verry IM, Hussain SW, Ellison NW, McManus MT, Williams WM. Introgression of Trifolium ambiguum into Allotetraploid white clover (Trifolium repens) using the ancestral parent trifolium occidentale as a bridging species. Front Plant Sci. 2022;13:858714. doi:10.3389/fpls.2022.858714.
  • Wu F, Ma S, Zhou J, Han C, Hu R, Yang X, Nie G, Zhang X. Genetic diversity and population structure analysis in a large collection of white clover (Trifolium repens L.) germplasm worldwide. PeerJ. 2021;9:e11325. doi:10.7717/peerj.11325.
  • Harp DA, Steven P. Nitrogen level affects greenhouse growth and quality of ornamental white clover (Trifolium repens L.). null. 2008;60:8–12.
  • Zhang Y, Sledge MK, Bouton JH. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theor Appl Genet. 2007;114(8):1367–1378. doi:10.1007/s00122-007-0523-3.
  • Bao G, Tang W, He F, Chen W, Zhu Y, Fan C, Zhang M, Chang Y, Sun J, Ding X. Physiological response in the leaf and stolon of white clover under acid precipitation and freeze–thaw stress. Funct Plant Biol. 2019;47(1):50–57. doi:10.1071/FP19072.
  • Inostroza L, Bhakta M, Acuña H, Vásquez C, Ibáñez J, Tapia G, Mei W, Kirst M, Resende M, Munoz P. UnderstandIng the complexity of cold tolerance in white clover using temperature gradient locations and a GWAS approach. Plant Genome. 2018;11(3):11. doi:10.3835/plantgenome2017.11.0096.
  • Griffiths AG, Moraga R, Tausen M, Gupta V, Bilton TP, Campbell MA, Ashby R, Nagy I, Khan A, Larking A, et al. Breaking free: the genomics of allopolyploidy-facilitated niche expansion in white clover. Plant Cell. 2019;31(7):1466–1487. doi:10.1105/tpc.18.00606.
  • Ma S, Yang Z, Wu F, Ma J, Fan J, Dong X, Hu R, Feng G, Li D, Wang X, et al. R2R3-MYB gene family: genome-wide identification provides insight to improve the content of proanthocyanidins in Trifolium repens. Gene. 2022;829:146523. doi:10.1016/j.gene.2022.146523.
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ . Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi:10.1093/nar/25.17.3389.
  • Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(suppl):W29–37. doi:10.1093/nar/gkr367.
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi:10.1093/nar/gkh340.
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi:10.1093/molbev/msab120.
  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server):W202–8. doi:10.1093/nar/gkp335.
  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi:10.1016/j.molp.2020.06.009.
  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee T-H, Jin H, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. doi:10.1093/nar/gkr1293.
  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645. doi:10.1101/gr.092759.109.
  • Lee T, Yang S, Kim E, Ko Y, Hwang S, Shin J, Shim JE, Shim H, Kim H, Kim C, et al. AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res. 2015;43(D1):D996–1002. doi:10.1093/nar/gku1053.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303.
  • Alexa A, Rahnenfuhrer J. 2019. topGO: enrichment analysis for gene ontology. R Package 2019. version 2.38.1.
  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi:10.1038/nmeth.4197.
  • Zhang X, Yang H, Li M, Chen C, Bai Y, Guo D, Guo C, Shu Y. Time-course RNA-seq analysis provides an improved understanding of genetic regulation in response to cold stress from white clover (Trifolium repens L.). Biotechnol Biotechnol Equip. 36(1), 1–8. doi:10.1080/13102818.2022.2108339.
  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi:10.1093/nar/gks596.
  • Li W, Liu Y, Zhao J, Zhen X, Guo C, Shu Y. Genome-wide identification and characterization of R2R3-MYB genes in Medicago truncatula. Genet Mol Biol. 2019;42(3):611–623. doi:10.1590/1678-4685-gmb-2018-0235.
  • Sandli N, Svenning MM, Røsnes K, Junttila O. Effect of nitrogen supply on frost resistance, nitrogen metabolism and carbohydrate content in white clover (Trifolium repens). Physiol Plant. 1993;88(4):661–667. doi:10.1111/j.1399-3054.1993.tb01386.x.
  • Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F.N.W.C., Insights on Calcium-Dependent Protein Kinases (CPKs) sigNaling for abiotic stress tolerance in plants. Int J Mol Sci. 2019;20(21):20. doi:10.3390/ijms20215298.
  • Yip Delormel T, Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol. 2019;224(2):585–604. doi:10.1111/nph.16088.
  • Hamel LP, Sheen J, Séguin A. Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci. 2014;19(2):79–89. doi:10.1016/j.tplants.2013.10.009.
  • Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics. 2007;278(5):493–505. doi:10.1007/s00438-007-0267-4.
  • Liu W, Li W, He Q, Daud MK, Chen J, Zhu S, Zhang B. Genome-wide survey and expression analysis of calcium-dependent protein kinase in Gossypium raimondii. PLos One. 2014;9(6):e98189. doi:10.1371/journal.pone.0098189.
  • Hu Z, Lv X, Xia X, Zhou J, Shi K, Yu J, Zhou Y. Genome-wide identification and expression analysis of calcium-dependent protein kinase in tomato. Front Plant Sci. 2016;7:469. doi:10.3389/fpls.2016.00469.
  • Xu X, Liu M, Lu L, He M, Qu W, Xu Q, Qi X, Chen X. Genome-wide analysis and expression of the calcium-dependent protein kinase gene family in cucumber. Mol Genet Genomics. 2015;290(4):1403–1414. doi:10.1007/s00438-015-1002-1.
  • Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu W-H. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2±mediated stomatal regulation in response to drought stress. Plant Physiol. 2010;154(3):1232–1243. doi:10.1104/pp.110.157545.
  • Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J. NoVel protein kinases associated with Calcineurin B–like calcium sensors in Arabidopsis. Plant Cell. 1999;11(12):2393–2405. doi:10.1105/tpc.11.12.2393.
  • Huang C, Ding S, Zhang H, Du H, An L. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 2011;181(1):57–64. doi:10.1016/j.plantsci.2011.03.011.
  • Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci. 2016;7:327. doi:10.3389/fpls.2016.00327.
  • Sheen J. Ca2±depEndent protein kinases and stress signal transduction in plants. Science. 1996;274(5294):1900–1902. doi:10.1126/science.274.5294.1900.
  • McAinsh MR, Pittman JK. Shaping the calcium signature. New Phytol. 2009;181(2):275–294. doi:10.1111/j.1469-8137.2008.02682.x.
  • Li Y, Zhang H, Liang S, Chen X, Liu J, Zhang Y, Wang A. Identification of CDPK gene family in solanum habrochaites and its function analysis under stress. Int J Mol Sci. 2022;23(8):23. doi:10.3390/ijms23084227.
  • Komatsu S, Yang G, Khan M, Onodera H, Toki S, Yamaguchi M. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol Genet Genomics. 2007;277(6):713–723. doi:10.1007/s00438-007-0220-6.
  • Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ. 2017;40(7):1197–1213. doi:10.1111/pce.12916.
  • Lv X, Li H, Chen X, Xiang X, Guo Z, Yu J, Zhou Y. The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. J Exp Bot. 2018;69(16):4127–4139. doi:10.1093/jxb/ery212.