1,811
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Methyltransferase-like (METTL) homologues participate in Nicotiana benthamiana antiviral responses

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2214760 | Received 04 Feb 2023, Accepted 24 Apr 2023, Published online: 21 May 2023

References

  • Wiener D, Schwartz S. The epitranscriptome beyond m6A. Nat Rev Genet. 2021;22(2):119–10. doi:10.1038/s41576-020-00295-8.
  • Martin JL, McMillan FM. SAM (dependent) I AM: the S-Adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol. 2002;12(6):783–793. doi:10.1016/s0959-440x(02)00391-3.
  • Schubert HL, Blumenthal RM, Cheng X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci. 2003;28:329–335.
  • Huang J, Yin P. Structural insights into N6-methyladenosine (m6A) modification in the transcriptome. Genom Proteom Bioinformat. 2018;16(2):85–98. doi:10.1016/j.gpb.2018.03.001.
  • Sun Q, Huang M, Wei Y. Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharm Sin B. 2021;11(3):632–650. doi:10.1016/j.apsb.2020.08.011.
  • Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Res. 2022;50(8):4216–4245. doi:10.1093/nar/gkac224.
  • Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing MRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–624. doi:10.1038/s41580-019-0168-5.
  • Dang W, Xie Y, Cao P, Xin S, Wang J, Li S, Li Y, Lu J. N6-methyladenosine and viral infection. Front Microbiol. 2019;10:417. doi:10.3389/fmicb.2019.00417.
  • Miao Z, Zhang T, Xie B, Qi Y, Ma C, Echave J. Evolutionary implications of the RNA N6-methyladenosine methylome in plants. Mol Biol Evol. 2022;39(1):msab299. doi:10.1093/molbev/msab299.
  • Yue J, Wei Y, Zhao M. The reversible methylation of m6A is involved in plant virus infection. Biology. 2022;11(2):271. doi:10.3390/biology11020271.
  • Li N, Rana TM. Regulation of antiviral innate immunity by chemical modification of viral RNA. Wiley Interdiscip Rev RNA. 2022;13(6):e1720. doi:10.1002/wrna.1720.
  • Liang Z, Riaz A, Chachar S, Ding Y, Du H, Gu X. Epigenetic modifications of mRNA and DNA in plants. Mol Plant. 2020;13(1):14–30. doi:10.1016/j.molp.2019.12.007.
  • Duan H, Wang Y, Jia G. Dynamic and reversible RNA N6‐methyladenosine methylation. WIREs RNA. 2019;10(1):1. doi:10.1002/wrna.1507.
  • Wong JM, Eirin-Lopez JM, Larracuente A. Evolution of methyltransferase-like (METTL) proteins in Metazoa: a complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol. 2021;38(12):5309–5327. doi:10.1093/molbev/msab267.
  • Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Sci. 2015;347(6225):1002–1006. doi:10.1126/science.1261417.
  • Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M, Fray RG. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell. 2008;20(5):1278–1288. doi:10.1105/tpc.108.058883.
  • Růžička K, Zhang M, Campilho A, Bodi Z, Kashif M, Saleh M, Eeckhout D, El‐showk S, Li H, Zhong S, De Jaeger G, Mongan NP, Hejátko J, Helariutta Y, Fray RG. Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol. 2017;215(1):157–172. doi:10.1111/nph.14586.
  • Mushegian A. Methyltransferases of Riboviria. Biomolecul. 2022;12(9):1247. doi:10.3390/biom12091247.
  • Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V, Wang Y, Mason CE, Rana TM. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol. 2016;1(4):16011. doi:10.1038/nmicrobiol.2016.11.
  • Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y, He C, Rana TM. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host & Microbe. 2016;20(5):666–673. doi:10.1016/j.chom.2016.10.002.
  • Sacco MT, Bland KM, Horner SM, Heise MT. WTAP targets the METTL3 m6A-methyltransferase complex to cytoplasmic hepatitis C virus RNA to regulate infection. J Virol. 2022;96(22): e00997-22. doi:10.1128/jvi.00997-22.
  • Gokhale NS, McIntyre ABR, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, Hopcraft SE, Quicke KM, Vazquez C, Willer J, Ilkayeva OR, Law BA, Holley CL, Garcia-Blanco MA, Evans MJ, Suthar MS, Bradrick SS, Mason CE, Horner SM. N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host & Microbe. 2016;20(5):654–665. doi:10.1016/j.chom.2016.09.015.
  • Liu J, Xu YP, Li K, Ye Q, Zhou HY, Sun H, Li X, Yu L, Deng YQ, Li RT, Cheng ML, He B, Zhou J, Li XF, Wu A, Yi C, Qin CF. The m6A methylome of SARS-CoV-2 in host cells. Cell Res. 2021;31(4):404–414. doi:10.1038/s41422-020-00465-7.
  • Zhou L, Gao G, Tang R, Wang W, Wang Y, Tian S, Qin G. m6A‐mediated regulation of crop development and stress responses. Plant Biotechnol J. 2022:13792. doi:10.1111/pbi.13792.
  • Martínez-Pérez M, Aparicio F, López-Gresa MP, Bellés JM, Sánchez-Navarro JA, Pallás V. Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proc Natl Acad Sci U S A. 2017;114(40):10755–10760. doi:10.1073/pnas.1703139114.
  • Martínez-Pérez M, Gómez-Mena C, Alvarado-Marchena L, Nadi R, Micol JL, Pallás V, Aparicio F. The m6A RNA demethylase ALKBH9B plays a critical role for vascular movement of alfalfa mosaic virus in Arabidopsis. Front Microbiol. 2021;12:745576. doi:10.3389/fmicb.2021.745576.
  • Pasin F, Daròs JA, Tzanetakis IE. Proteome expansion in the Potyviridae evolutionary radiation. FEMS Microbiol Rev. 2022;46(4):fuac011. doi:10.1093/femsre/fuac011.
  • Inoue-Nagata AK, Jordan R, Kreuze J, Li F, López-Moya JJ, Mäkinen K, Ohshima K, Wylie SJ. ICTV report consortium. ICTV virus taxonomy profile: Potyviridae 2022. J Gen Virol. 2022;103(5):5. doi:10.1099/jgv.0.001738.
  • Yue J, Wei Y, Sun Z, Chen Y, Wei X, Wang H, Pasin F, Zhao M. AlkB RNA demethylase homologues and N6-methyladenosine are involved in Potyvirus infection. Mol Plant Pathol. 2022;23(10):1555–1564. doi:10.1111/mpp.13239.
  • Zhang T, Wang Z, Hu H, Chen Z, Liu P, Gao S, Zhang F, He L, Jin P, Xu M, et al. Transcriptome-wide N6-methyladenosine (m6A) profiling of susceptible and resistant wheat varieties reveals the involvement of variety-specific m6A modification involved in virus-host interaction pathways. Front Microbiol. 2021;12:656302. doi:10.3389/fmicb.2021.656302.
  • Zhang T, Shi C, Hu H, Zhang Z, Wang Z, Chen Z, Feng H, Liu P, Guo J, Lu Q, Zhong K, Chen Z, Liu J, Yu J, Chen J, Chen F, Yang J. N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection. Nat Commun. 2022;13(1):6576. doi:10.1038/s41467-022-34362-x.
  • Kourelis J, Kaschani F, Grosse-Holz FM, Homma F, Kaiser M, van der Hoorn RAL. A homology-guided, genome-based proteome for improved proteomics in the alloploid Nicotiana Benthamiana. BMC Genomics. 2019;20(1):722. doi:10.1186/s12864-019-6058-6.
  • Pasin F, Shan H, García B, Müller M, San León D, Ludman M, Fresno DH, Fátyol K, Munné-Bosch S, Rodrigo G, García JA. Abscisic acid connects phytohormone signaling with RNA metabolic pathways and promotes an antiviral response that is evaded by a self-controlled RNA virus. Plant Commun. 2020;1(5):100099. doi:10.1016/j.xplc.2020.100099.
  • Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18(11):2004–2014. doi:10.15252/embr.201744940.
  • Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: targets and function. Wiley Interdiscip Rev RNA. 2022;13(2):e1681. doi:10.1002/wrna.1681.
  • Parker MT, Soanes BK, Kusakina J, Larrieu A, Knop K, Joy N, Breidenbach F, Sherwood AV, Barton GJ, Fica SM, et al. m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5’ splice site. Elife. 2022;11:e78808. doi:10.7554/eLife.78808.
  • Xu T, Wu X, Wong CE, Fan S, Zhang Y, Zhang S, Liang Z, Yu H, Shen L. FIONA1-mediated m6A modification regulates the floral transition in Arabidopsis. Adv Sci. 2022;9(6):e2103628. doi:10.1002/advs.202103628.
  • Wu R, Ding F, Wang R, Shen R, Zhang X, Luo S, Su C, Wu Z, Xie Q, Berger B, et al. High-resolution de novo structure prediction from primary sequence. Preprint. 2022. doi:10.1101/2022.07.21.500999.
  • Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1):D439–444. doi:10.1093/nar/gkab1061.
  • Ji L, Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res. 2012;22(4):624–636. doi:10.1038/cr.2012.36.
  • van den Born E, Omelchenko MV, Bekkelund A, Leihne V, Koonin EV, Dolja VV, Falnes PØ. Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucleic Acids Res. 2008;36(17):5451–5461. doi:10.1093/nar/gkn519.
  • Alvarado-Marchena L, Martínez-Pérez M, Úbeda JR, Pallas V, Aparicio F. Impact of the potential m6A modification sites at the 3’UTR of alfalfa mosaic virus RNA3 in the viral infection. Viruses. 2022;14(8):1718. doi:10.3390/v14081718.
  • Zhang K, Zhuang X, Dong Z, Xu K, Chen X, Liu F, He Z. The dynamics of N6-methyladenine RNA modification in interactions between rice and plant viruses. Genome Biol. 2021;22(1):189. doi:10.1186/s13059-021-02410-2.
  • Li Z, Shi J, Yu L, Zhao X, Ran L, Hu D, Song B. N6-methyl-adenosine level in Nicotiana tabacum is associated with tobacco mosaic virus. Virol J. 2018;15(1):87. doi:10.1186/s12985-018-0997-4.
  • He Y, Li L, Yao Y, Li Y, Zhang H, Fan M. Transcriptome-wide N6-methyladenosine (m6A) methylation in watermelon under CGMMV infection. BMC Plant Biol. 2021;21(1):516. doi:10.1186/s12870-021-03289-8.
  • Niu J, Tang M, Wu W, Huo S, Wang X, Liang X, Huang X, Wang G, Jing C, Feng X. N6-methyladenosine regulatory genes in common bean (Phaseolus vulgaris): genome-wide investigation, evolution, structure, characterization, and expression patterns during viral infection. Preprint. 2022. doi:10.21203/rs.3.rs-2243840/v1.
  • Tian S, Wu N, Zhang L, Wang X. RNA N6-methyladenosine modification suppresses replication of rice black streaked dwarf virus and is associated with virus persistence in its insect vector. Mol Plant Pathol. 2021;22(9):1070–1081. doi:10.1111/mpp.13097.
  • Bratlie MS, Drabløs F. Bioinformatic mapping of AlkB homology domains in viruses. BMC Genomics. 2005;6(1):1. doi:10.1186/1471-2164-6-1.
  • Susaimuthu J, Tzanetakis IE, Gergerich RC, Martin RR. A member of a new genus in the Potyviridae infects Rubus. Virus Res. 2008;131(2):145–151. doi:10.1016/j.virusres.2007.09.001.
  • Garcia-Ruiz H. Host factors against plant viruses. Mol Plant Pathol. 2019;20(11):1588–1601. doi:10.1111/mpp.12851.
  • Pasin F, Bedoya LC, Bernabé-Orts JM, Gallo A, Simón-Mateo C, Orzaez D, García JA. Multiple T-DNA delivery to plants using novel mini binary vectors with compatible replication origins. ACS Synth Biol. 2017;6(10):1962–1968. doi:10.1021/acssynbio.6b00354.
  • Pasin F. Assembly of plant virus agroinfectious clones using biological material or DNA synthesis. STAR Protoc. 2022;3(4):101716. doi:10.1016/j.xpro.2022.101716.
  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–890. doi:10.1093/bioinformatics/bty560.
  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi:10.1038/nmeth.4197.
  • Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact. 2012;25(12):1523–1530. doi:10.1094/MPMI-06-12-0148-TA.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformat. 2010;26(1):139–140. doi:10.1093/bioinformatics/btp616.
  • Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformat. 2006;22(12):1540–1542. doi:10.1093/bioinformatics/btl117.
  • Woodcroft BJ, Boyd JA, Tyson GW. OrfM: a fast open reading frame predictor for metagenomic data. Bioinformat. 2016;32(17):2702–2703. doi:10.1093/bioinformatics/btw241.
  • Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA, Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A, Finn RD. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49(D1):D344–354. doi:10.1093/nar/gkaa977.
  • Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J. SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res. 2009;37(Database issue):D380–386. doi:10.1093/nar/gkn762.
  • Sainsbury F, Thuenemann EC, Lomonossoff GP. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J. 2009;7(7):682–693. doi:10.1111/j.1467-7652.2009.00434.x.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. doi:10.1093/molbev/msw054.
  • Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63(2):306–317. doi:10.1016/j.molcel.2016.05.041.
  • Mendel M, Chen KM, Homolka D, Gos P, Pandey RR, McCarthy AA, Pillai RS. Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development. Mol Cell. 2018;71(6):986–1000.e11. doi:10.1016/j.molcel.2018.08.004.
  • Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82. doi:10.1002/pro.3943.
  • Pei J, Kim BH, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 2008;36(7):2295–2300. doi:10.1093/nar/gkn072.
  • Holm L, Laakso LM. Dali server update. Nucleic Acids Res. 2016;44(W1):W351–355. doi:10.1093/nar/gkw357.
  • Zhang C, Shine M, Pyle AM, Zhang Y. US-align: universal structure alignments of proteins, nucleic acids, and macromolecular complexes. Nat Methods. 2022;19(9):1109–1115. doi:10.1038/s41592-022-01585-1.
  • Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN. Evaluating strategies to normalise biological replicates of Western blot data. PLos One. 2014;9(1):e87293. doi:10.1371/journal.pone.0087293.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol). 1995;57(1):289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.