1,958
Views
2
CrossRef citations to date
0
Altmetric
Review

Cercospora leaf spot disease of sugar beet

ORCID Icon, , &
Article: 2214765 | Received 03 Mar 2023, Accepted 01 May 2023, Published online: 20 May 2023

References

  • Geng G, Yang J. Sugar beet production and industry in China. Sugar Tech. 2015;17(1):13–6. doi:10.1007/s12355-014-0353-y.
  • Stevanato P, Chiodi C, Broccanello C, Concheri G, Biancardi E, Pavli O, Skaracis G. Sustainability of the sugar beet crop. Sugar Tech. 2019;21(5):703–716. doi:10.1007/s12355-019-00734-9.
  • Saccardo PAFVNVC. Fungi Veneti Novi vel Critici. Series V. Nuovo Giornale Botanico Italiano. 1876;8:162–211.
  • von Thümen F. Die Bekämpfung der Pilzkrankheiten unserer Culturgewächse: Versuch einer Pflanzentherapie zum praktischen Gebrauche für Land-und Forstwirthe, Gärtner, Obst-und Weinzüchter;. Wien: Verlag von Georg Paul Fasey; 1886.
  • Holtschulte B. Cercospora beticola-worldwide distribution and incidence. Cercospora beticola. 2000;2:5–16.
  • Pool VW, McKay MB. Climatic conditions as related to Cercospora beticola. J Agric Res. 1916;6:21–60.
  • Solel Z. Infection process of Cercospora beticola in sugarbeet in relation to susceptibility. Phytopathology. 1971;61(5):463–466. doi:10.1094/Phyto-61-463.
  • Steinkamp MP, Martin SS, Hoefert LL, Ruppel EG. Ultrastructure of lesions produced by Cercospora beticola in Leaves of Beta vulgaris. Physiol Plant Pathol. 1979;15(1):13–26. doi:10.1016/0048-4059(79)90035-3.
  • Imbusch F, Liebe S, Erven T, Varrelmann M. Dynamics of cercospora leaf spot disease determined by aerial spore dispersal in artificially inoculated sugar beet fields. null. 2021;70(4):853–861. doi:10.1111/ppa.13337.
  • Vaghefi N, Kikkert JR, Bolton MD, Hanson LE, Secor GA, Nelson SC, Pethybridge SJ, Chiang T-Y. Global genotype flow in Cercospora beticola populations confirmed through genotyping-by-sequencing. PLos One. 2017;12(10):e0186488. doi:10.1371/journal.pone.0186488.
  • Knight NL, Vaghefi N, Kikkert JR, Bolton MD, Secor GA, Rivera VV, Hanson LE, Nelson SC, Pethybridge SJ. Genetic diversity and structure in regional Cercospora beticola populations from Beta vulgaris subsp. vulgaris suggest two clusters of separate origin. Phytopathology®. 2019;109(7):1280–1292. doi:10.1094/phyto-07-18-0264-r.
  • Spanner R, Neubauer J, Heick TM, Grusak MA, Hamilton O, Rivera-Varas V, de Jonge R, Pethybridge S, Webb KM, Leubner-Metzger G, et al. Seedborne cercospora beticola can initiate cercospora leaf spot from sugar beet (Beta vulgaris) fruit tissue. Phytopathology®. 2022;112(5):1016–1028. doi:10.1094/PHYTO-03-21-0113-R.
  • Kuyama S, Tamura TC. Cercosporin. A pigment of Cercosporina Kikuchii Matsumoto et Tomoyasu. II. Physical and chemical properties of cercosporin and its derivatives. J Am Chem Soc. 1957;79(21):5726–5729. doi:10.1021/ja01578a039.
  • Yamazaki S, Okubo A, Akiyama Y, Fuwa K. Cercosporin, a novel photodynamic pigment isolated from Cercospora kikuchii. Agric Biol Chem. 1975;39(1):287–288. doi:10.1271/bbb1961.39.287.
  • Daub ME, Ehrenshaft M. The photoactivated cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu Rev Phytopathol. 2000;38(1):461–490. doi:10.1146/annurev.phyto.38.1.461.
  • Choquer M, Dekkers KL, Chen HQ, Cao L, Ueng PP, Daub ME, Chung KR. The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin biosynthesis and fungal virulence of Cercospora nicotianae. Mol Plant-Microbe Interactions. 2005;18(5):468–476. doi:10.1094/mpmi-18-0468.
  • Staerkel C, Boenisch MJ, Kröger C, Bormann J, Schäfer W, Stahl D. CbCTB2, an O-methyltransferase is essential for biosynthesis of the phytotoxin cercosporin and infection of sugar beet by Cercospora beticola. BMC Plant Biol. 2013;13(1):50. doi:10.1186/1471-2229-13-50.
  • de Jonge R, Ebert MK, Huitt-Roehl CR, Pal P, Suttle JC, Spanner RE, Neubauer JD, Jurick WM II, Stott KA, Secor GA, et al. Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc Natl Acad Sci. 2018;115(24):E5459–5466. doi:10.1186/1471-2229-13-50.
  • Milat ML, Blein JP. Cercospora beticola toxins III. Purification, Thin-layer and aigh performance liquid chromatographic analyses. J Chromatogr A. 1995;699(1–2):277–283. doi:10.1016/0021-9673(95)00079-3.
  • Goudet C, Milat ML, Sentenac H, Thibaud JBB, Nonpeptidic. Beticolins, nonpeptidic, polycyclic molecules produced by the phytopathogenic fungus cercospora beticola, as a new family of ion channel-forming toxins. Mol Plant-Microbe Interactions. 2000;13(2):203–209. doi:10.1094/MPMI.2000.13.2.203.
  • Rangel LI, Spanner RE, Ebert MK, Pethybridge SJ, Stukenbrock EH, de Jonge R, Secor GA, Bolton MD. Cercospora beticola: the intoxicating lifestyle of the leaf spot pathogen of sugar beet. Mol Plant Pathol. 2020;21(8):1020–1041. doi:10.1111/mpp.12962.
  • Ebert MK, Spanner RE, de Jonge R, Smith DJ, Holthusen J, Secor GA, Thomma B, Bolton MD. Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi. Environ Microbiol. 2019;21(3):913–927. doi:10.1111/1462-2920.14475.
  • Ebert MK, Rangel LI, Spanner RE, Taliadoros D, Wang X, Friesen TL, de Jonge R, Neubauer JD, Secor GA, Thomma BPHJ, et al. Identification and characterization of Cercospora beticola necrosis-inducing effector CbNip1. Mol Plant Pathol. 2021;22(3):301–316. doi:10.1111/mpp.13026.
  • Roberts MR, Paul, Paul ND. Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol. N.D;2006170(4):677–699. doi:10.1111/j.1469-8137.2006.01707.x.
  • Rossi V, Meriggi P, Biancardi E, Rosso F. Effect of cercospora leaf spot on sugarbeet growth, yield and quality. Cercospora Beticola Sacc Biology, Agronomic Influence And Control Measures In Sugar Beet. 2000:49–76.
  • Skaracis GN, Pavli OI, Biancardi E. Cercospora leaf spot disease of sugar beet. Sugar Tech. 2010;12(3–4):220–228. doi:10.1007/s12355-010-0055-z.
  • Khan J, Del Río LE, Nelson R, Khan MFR. Improving the cercospora leaf spot prediction model for sugar beet in Minnesota and North Dakota. Plant Dis. 2007;91(9):1105–1108. doi:10.1094/PDIS-91-9-1105.
  • Rossi V, Battilani P. CERCOPRI: a forecasting model for primary infections of cercospora leaf spot of sugarbeet1. null. 1991;21(3):527–531. doi:10.1111/j.1365-2338.1991.tb01284.x.
  • Wijekoon CP, Goodwin PH, Hsiang T. Quantifying fungal infection of plant leaves by digital image analysis using scion image software. J Microbiol Meth. 2008;74(2–3):94–101. doi:10.1016/j.mimet.2008.03.008.
  • Jay S, Comar A, Benicio R, Beauvois J, Dutartre D, Daubige G, Li W, Labrosse J, Thomas S, Henry N, et al. Scoring cercospora leaf spot on sugar beet: comparison of UGV and UAV phenotyping systems. null. 2020;2020:1–18. doi:10.34133/2020/9452123.
  • Bock C, Poole G, Parker PE, Gottwald T. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci. 2010;29(2):59–107. doi:10.1080/07352681003617285.
  • De Coninck BMA, Amand O, Delauré SL, Lucas S, Hias N, Weyens G, Mathys J, De Bruyne E, Cammue BPA. The use of digital image analysis and Real-time PCR fine-tunes bioassays for quantification of cercospora leaf spot disease in sugar beet breeding. null. 2012;61(1):76–84. doi:10.1111/j.1365-3059.2011.02497.x.
  • Ozguven MM, Adem K. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Physica A. 2019;535:122537. doi:10.1016/j.physa.2019.122537.
  • Afridi M, Liu X, McGrath J An automated system for plant-level disease rating in real fields. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014.
  • Liu Q, Xiao L, Yang J, Wei Z. CNN-enhanced graph convolutional network with pixel- and superpixel-level feature fusion for hyperspectral image classification. IEEE T Geosci Remote. 2021;59(10):8657–8671. doi:10.1109/TGRS.2020.3037361.
  • Lartey RT, Weiland JJ, Caesar-TonThat T, Bucklin-Comiskey S. A PCR protocol for rapid detection of Cercospora beticola in sugarbeet tissues. J Am Soc Sugar Beet Technol. 2003;40(1):1–10. doi:10.5274/jsbr.40.1.1.
  • Wieczorek TM, Jørgensen LN, Hansen AL, Munk L, Justesen AF. Early detection of sugar beet pathogen Ramularia beticola in leaf and air samples using qPCR. null. 2014;138(4):775–785. doi:10.1007/s10658-013-0349-6.
  • Caesar-TonThat TC, Lartey RL, Shelver WL. Enzyme-linked immunosorbent assay for Cercospora beticola in soil. J Am Soc Sugar Beet Technol. 2007;44(1):51–70. doi:10.5274/jsbr.44.1.51.
  • Lartey RT, Caesar-TonThat TC, Lenssen AW, Eckhoff J, Hanson SL, Evans RG. Direct polymerase chain reaction-based detection of cercospora beticola in field soils. Plant Dis. 2010;94(9):1100–1104. doi:10.1094/PDIS-94-9-1100.
  • Ioanidis PM, Karaoglanidis GS, Lartey RT. Control of cercospora leaf spot and powdery mildew of sugar beet with fungicides and tolerant cultivars. In: Cercospora leaf spot of sugar beet and related species. Lartey RT, Weiland JJ, Panella L, Crous PW Windels CE APS Press: St. Paul< MN. 2010pp. 259–274.
  • Khan MFR, Smith LJ. Evaluating fungicides for controlling cercospora leaf spot on sugar beet. Crop Protection. 2005;24(1):79–86. doi:10.1016/j.cropro.2004.06.010.
  • Ghazy N, Shahin AA, Mustafa FA. Effect of some mineral elements on the yield, sugar contents and improving resistance to cercospora leaf spot of sugar beet. Environ Biodivers Soil Secur. 2020;4:73–83. doi:10.21608/jenvbs.2020.28240.1090.
  • Galletti S, Burzi PL, Cerato C, Marinello S, Sala E. Trichoderma as a potential biocontrol agent for cercospora leaf spot of sugar beet. BioControl. 2008;53(6):917–930. doi:10.1007/s10526-007-9113-1.
  • Esh AMH, Atia MMM, Tohamy MRA, Taghian S. Systemic resistance in sugar beet eliciated by non-pathogenic, phyllosphere-colonizing Bacillus pumilus and B. subtilus against the pathogen Cercospora beticola sacc. J Plant Prot Pathol. 2011;2(1):67–83. doi:10.21608/jppp.2011.84657.
  • Esh A, Taghian S. Role of Emericella Nidulans and Epicoccum Nigrum in ‎Controlling sugar beet leaf spot disease‎. Egypt J Basic Appl Sci. 2021;1(2):55–65. doi:10.21608/eajast.2021.90993.1001.
  • Sarhan EAD. Induction of induced systemic resistance in fodder beet (Beta vulgaris L.) to cercospora leaf spot caused by (Cercospora beticola Sacc.). Egyptian Journal Of Phytopathology. 2018;46(2):39–59. doi:10.21608/EJP.2018.91706.
  • Seleim MA, Abo-Elyousr KAM, Mohamed AAA, Al-Marzoky HA. Peroxidase and polyphenoloxidase activities as biochemical markers for biocontrol efficacy in the control of tomato bacterial wilt. J Plant Physiol Pathol. 2014;2(01):2–8. doi:10.4172/2329-955X.1000117.
  • Nicholson RL, Hammerschmid TR. Phenolic compounds and their role in disease resistance. Ann Rev Phytopathol. 1992;30(1):369–389.
  • Weiland J, Koch G. Sugarbeet leaf spot disease (Cercospora beticola Sacc.)+. Mol Plant Pathol. 2004;5(3):157–166. doi:10.1111/j.1364-3703.2004.00218.x.
  • Bilgen T, Gaskill JO, Hecker RJ, Wood DR. Transferring cercospora leaf spot resistance from Beta maritima to sugarbeet by backcrossing. J Am Soc Sugar Beet Technol. 1969;15(5):444–449. doi:10.5274/jsbr.15.5.444.
  • Smith GA, Gaskill JO. Inheritance of resistance to cercospora leaf spot in sugarbeet. J Am Soc Sugar Beet Technol. 1970;16(2):172–180. doi:10.5274/jsbr.16.2.172.
  • Setiawan A, Koch G, Barnes SR, Jung C. Mapping quantitative trait loci (QTLs) for resistance to cercospora leaf spot disease (Cercospora beticola Sacc.) in sugar beet (Beta vulgaris L.). Theor Appl Genet. 2000;100(8):1176–1182. doi:10.1007/s001220051421.
  • Smith GA, Ruppel EG. Herability of resistance to cercospora leaf spot in sugarbeet1. Crop Sci. 1974;14(1):113–115. doi:10.2135/cropsci1974.0011183x001400010034x.
  • Abd El-Fatah BES, Hashem M, Abo-Elyousr KAM, Khalil Bagy HMM, Alamri SAM. Genetic and biochemical variations among sugar beet cultivars resistant to cercospora leaf spot. Physiol Mol Plant P. 2020;109:101455. doi:10.1016/j.pmpp.2019.101455.
  • Broccanello C, Ravi S, Deb S, Bolton M, Secor G, Richards C, Maretto L, Lucia MCD, Bertoldo G, Orsini E, et al. Bacterial endophytes as indicators of susceptibility to cercospora leaf spot (CLS) disease in Beta vulgaris L. null. 2022;12(1):10719. doi:10.1038/s41598-022-14769-8.
  • Sekiyama Y, Okazaki K, Kikuchi J, Ikeda S. NMR-based metabolic profiling of field-grown leaves from sugar beet plants harbouring different levels of resistance to cercospora leaf spot disease. Metabolites. 2017;7(1):4. doi:10.3390/metabo7010004.
  • Schlosser E. A review of some mechanisms of resistance of sugar beet to Cercospora beticola. Journal IIRB. 1969;4:185–191.
  • Maag GW, Hecker RJ, Payne MG, Remmenga EE, Harrison EM. The interaction of 3-hydroxytyramine and polyphenol oxidase with weight per root and percent sucrose in sugar beets. J Am Soc Sugar Beet Technol. 1967;14(8):709–726. doi:10.5274/jsbr.14.8.709.
  • Smith GA, Campbell LG. Association between resistance to cercospora and yield in commercial sugarbeet hybrids. Plant Breeding. 1996;115(1):28–32. doi:10.1111/j.1439-0523.1996.tb00866.x.
  • Mechelke W. Züchtungs-und Sortenstrategien zur Resistenz bei Zuckerrüben gegenüber Cercospora beticola. Zuckerindustrie. 2000;125:688–692.
  • Skaracis GN, Ioannidis PM, Ioannidis PI Integrated management systems against sugarbeet cercospora leaf spot disease. Proceedings of the 59th IIRB congress, Brussels. 1996, 45–54.
  • Pethybridge SJ, Sharma S, Hansen Z, Kikkert JR, Olmstead DL, Hanson LE. Optimizing cercospora leaf spot control in table beet using action thresholds and disease forecasting. Plant Dis. 2020;104(6):1831–1840. doi:10.1094/pdis-02-20-0246-re.
  • Wolf PFJ, Verreet JA. An integrated pest management system in germany for the control of fungal leaf diseases in sugar beet: the IPM sugar beet model. Plant Dis. 2002;86(4):336–344. doi:10.1094/pdis.2002.86.4.336.
  • Racca P, Jörg E. CERCBET 3 ? a forecaster for epidemic development of Cercospora beticola. null. 2007;37(2):344–349. doi:10.1111/j.1365-2338.2007.01136.x.
  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Biological Control Agent Physiol Mol Plant P. 2002;61(5):289–298. doi:10.1006/pmpp.2003.0443.
  • Caesar-TonThat TC, Lartey RT, Solberg-Rodier LL, Caesar AJ. Effects of basidiomycete laccase on cercosporin. J Plant Pathol. 2009;91:347–355.
  • Yin H, Zhao X, Du Y. Oligochitosan: a plant diseases vaccine—a review. Carbohyd Polym. 2010;82(1):1–8. doi:10.1016/j.carbpol.2010.03.066.
  • Daub ME, Herrero S, Chung KR. Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol Lett. 2005;252(2):197–206. doi:10.1016/j.femsle.2005.08.033.
  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol. 2000;18(12):1307–1310. doi:10.1038/82436.
  • Li S, Lin D, Zhang Y, Deng M, Chen Y, Lv B, Li B, Lei Y, Wang Y, Zhao L, et al. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature. 2022;602(7897):455–460. doi:10.1038/s41586-022-04395-9.