998
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Metabolic changes associated with dark-induced leaf senescence in Arabidopsis nadk2 mutants

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2215618 | Received 10 Feb 2023, Accepted 11 May 2023, Published online: 05 Jun 2023

References

  • Hashida SN, Takahashi H, Uchimiya H. The role of NAD biosynthesis in plant development and stress responses. Ann Bot. 2009;103(6):819–9. doi:10.1093/aob/mcp019.
  • Grose JH, Joss L, Velick SF, Roth JR. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci USA. 2006;103(20):7601–7606. doi:10.1073/pnas.0602494103.
  • Berrin J-G, Pierrugues O, Brutesco C, Alonso B, Montillet J-L, Roby D, Kazmaier M. Stress induces the expression of AtNADK-1, a gene encoding a NAD (H) kinase in Arabidopsis thaliana. Mol Genet Genom. 2005;273(1):10–19. doi:10.1007/s00438-005-1113-1.
  • Turner WL, Waller JC, Snedden WA. Identification, molecular cloning and functional characterization of a novel NADH kinase from Arabidopsis thaliana (thale cress). Biochem J. 2005;385(1):217–223. doi:10.1042/BJ20040292.
  • Chai M-F, Wei P-C, Chen Q-J, An R, Chen J, Yang S, Wang X-C. NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J. 2006;47(5):665–674. 10.1111/j.1365-313X.200602816.x.
  • Chai M-F, Chen Q-J, An R, Chen Y-M, Chen J, Wang X-C. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol. 2005;59(4):553–564. doi:10.1007/s11103-005-6802-y.
  • Takahashi H, Watanabe A, Tanaka A, Hashida S-N, Kawai-Yamada M, Sonoike K, Uchimiya H. Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis. Plant Cell Physiol. 2006;47(12):1678–1682. doi:10.1093/pcp/pcl029.
  • Turner WL, Waller JC, Vanderbeld B, Snedden WA. Cloning and characterization of two NAD kinases from Arabidopsis. Identification of a calmodulin binding isoform. Plant Physiol. 2004;135(3):1243–1255. doi:10.1104/pp.104.040428.
  • Takahara K, Kasajima I, Takahashi H, Hashida SN, Itami T, Onodera H, Toki S, Yanagisawa S, Kawai-Yamada M, Uchimiya H. Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene. Plant Physiol. 2010;152(4):1863–1873. doi:10.1104/pp.110.153098.
  • Takahashi H, Takahara K, Hashida SN, Hirabayashi T, Fujimori T, Kawai-Yamada M, Yamaya T, Yanagisawa S, Uchimiya H. Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene. Plant Physiol. 2009;151(1):100–113. doi:10.1104/pp.109.140665.
  • Onda Y, Miyagi A, Takahara K, Uchimiya H, Kawai‐yamada M, Mendel R. Effects of NAD kinase 2 overexpression on primary metabolite profiles in rice leaves under elevated carbon dioxide. Plant Biol. 2014;16(4):819–824. doi:10.1111/plb.12131.
  • Chaomurilege ZY, Miyagi A, Hashida SN, Ishikawa T, Yamaguchi M, Kawai‐yamada M, Kawai-Yamada M. Loss of chloroplast‐localized NAD kinase causes ROS stress in Arabidopsis thaliana. J Plant Res. 2023;136(1):97–106. doi:10.1007/s10265-022-01420-w.
  • Lim PO, Kim HJ, Nam HG. Leaf senescence. Annu Rev Plant Biol. 2007;58(1):115–136. doi:10.1146/annurev.arplant.57.032905.105316.
  • Weaver LM, Gan S, Quirino B, Amasino RM. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol. 1998;37(3):455–469. doi:10.1023/A:1005934428906.
  • Guo Y, Gan S. Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol. 2005;71:83–112. doi:10.1016/S0070-2153(05)71003-6.
  • Ceusters N, Valcke R, Frans M, Claes JE, Van den Ende W, Ceusters J. Performance index and PSII connectivity under drought and contrasting light regimes in the CAM orchid Phalaenopsis. Front Plant Sci. 2019;10:1012. doi:10.3389/fpls.2019.01012.
  • Ishikawa Y, Miyagi A, Haishima Y, Ishikawa T, Nagano M, Yamaguchi M, Hihara Y, Kawai-Yamada M. Metabolomic analysis of NAD kinase-deficient mutants of the cyanobacterium Synechocystis sp. PCC 6803. J Plant Physiol. 2016;205:105–112. doi:10.1016/j.jplph.2016.09.002.
  • Ishikawa Y, Kawai-Yamada M, Hashida SN. Measurement of chloroplastic NAD kinase activity and whole tissue NAD kinase assay. Bio-protocol. 2020;10(1):e3480. doi:10.21769/BioProtoc.3480.
  • Miyagi A, Saimaru T, Harigai N, Oono Y, Hase Y, Kawai‑yamada M. Metabolome analysis of rice leaves to obtain low-oxalate strain from ion beam-mutagenised population. Metabolomics. 2020;16(9):94. doi:10.1007/s11306-020-01713-y.
  • James M, Poret M, Masckaux-Daubresse C, Marmagne A, Coquet L, Jouenne T, Chan P, Trouverie J, Etienne P. SAG12, a major cysteine protease involved in nitrogen allocation during senescence for seed production in Arabidopsis thaliana. Plant & Cell Physiol. 2018;59(10):2052–2063. doi:10.1093/pcp/pcy125.
  • Kawai-Yamada M, Miyagi A, Sato Y, Hosoi Y, Hashida S-N, Ishikawa T, Yamaguchi M. Altered metabolism of chloroplastic NAD kinase- overexpressing Arabidopsis in response to magnesium sulfate supplementation. Plant Signal Behav. 2021;16(1):1844509. doi:10.1080/15592324.2020.1844509.
  • Kura-Hotta M, Satoh K, Katoh S. Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol. 1987;28:1321–1329. doi:10.1093/oxfordjournals.pcp.a077421.
  • Mae T, Ohira K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant Cell Physiol. 1981;22:1067–1074. doi:10.1093/oxfordjournals.pcp.a076248.
  • Law SR, Chrobok D, Juvany M, Delhomme N, Lindén P, Brouwer B, Ahad A, Moritz T, Jansson S, Gardeström P, et al. Darkened leaves use different metabolic strategies for senescence and survival. Plant Physiol. 2018;177(1):132–150. doi:10.1104/pp.18.00062.
  • Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, et al. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell. 2010;22(5):1549–1563. doi:10.1105/tpc.110.075630.
  • Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. Protein degradation – an alternative respiratory substrate for stressed plants. Trends Plant Sci. 2011;16(9):489–498. doi:10.1016/j.tplants.2011.05.008.