729
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

Polyamine depletion enhances oil body mobilization through possible regulation of oleosin degradation and aquaporin abundance on its membrane

&
Article: 2217027 | Received 11 Apr 2023, Accepted 13 May 2023, Published online: 27 May 2023

References

  • Adeleke BS, Babalola OO. Oilseed crop sunflower (Helianthus annuus) as a source of food: nutritional and health benefits. Food Sci Nutr. 2020;8(9):4666–8. doi:10.1002/fsn3.1783.
  • Shimada TL, Hayashi M, Hara-Nishimura I. Membrane dynamics and multiple functions of oil bodies in seeds and leaves. Plant Physiol. 2018;176(1):199–207. doi:10.1104/pp.17.01522.
  • Zienkiewicz K, Zienkiewicz A. Degradation of lipid droplets in plants and algae—right time, many paths, one goal. Front Plant Sci. 2020;11:579019. doi:10.3389/fpls.2020.579019.
  • Le Moigne D, Guéguen N, Salvaing J. Lipid droplets in plants: more than simple fat storage. Adv Bot Res. 2022;101:191–223. doi:10.1016/bs.abr.2021.07.004.
  • Zienkiewicz A, Saldat M, Zienkiewicz K. Here, there and everywhere–the importance of neutral lipids in plant growth and development. Postępy Biochemii. 2022;68:46–56. doi:10.18388/pb.2021_409.
  • Graham IA. Seed storage oil mobilization. Annu Rev Plant Biol. 2008;59(1):115–142. doi:10.1146/annurev.arplant.59.032607.092938.
  • Sadeghipour HR, Bhatla SC. Differential sensitivity of oleosins to proteolysis during oil body mobilization in sunflower seedlings. Plant Cell Physiol. 2002;43(10):1117–1126. doi:10.1093/pcp/pcf142.
  • Gupta A, Bhatla S. Spatial and temporal changes in lipase activity sites during oil body mobilization in protoplasts from sunflower seedling cotyledons. Plant Growth Regul. 2005;46(1):11–17. doi:10.1007/s10725-005-5231-x.
  • Yadav MK, Bhatla SC. Localization of lipoxygenase activity on the oil bodies and protoplasts using a novel fluorescence imaging method. Plant Physiol Biochem. 2011;49(2):230–234. doi:10.1016/j.plaphy.2010.11.012.
  • Eastmond PJ. SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell. 2006;18(3):665–675. doi:10.1105/tpc.105.040543.
  • Kelly AA, Quettier AL, Shaw E, Eastmond PJ. Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol. 2011;157(2):866–875. doi:10.1104/pp.111.181784.
  • Thazar-Poulot N, Miquel M, Fobis-Loisy I, Gaude T. Peroxisome extensions deliver the Arabidopsis SDP1 lipase to oil bodies. Proc Natl Acad Sci U S A. 2015;112(13):4158–4163. doi:10.1073/pnas.1403322112.
  • Xu C, Fan J. Links between autophagy and lipid droplet dynamics. J Exp Bot. 2022;73(9):2848–2858. doi:10.1093/jxb/erac003.
  • Vandana S, Bhatla SC. Evidence for the probable oil body association of a thiol-protease, leading to oleosin degradation in sunflower seedling cotyledons. Plant Physiol Biochem. 2006;44(11–12):714–723. doi:10.1016/j.plaphy.2006.09.022.
  • van der Schoot C, Paul LK, Paul SB, Rinne PL. Plant lipid bodies and cell-cell signaling: a new role for an old organelle? Plant Signal Behav. 2011;6(11):1732–1738. doi:10.4161/psb.6.11.17639.
  • Deruyffelaere C, Bouchez I, Morin H, Guillot A, Miquel M, Froissard M, Chardot T, d’Andréa S. Ubiquitin-mediated proteasomal degradation of oleosins is involved in oil body mobilization during post-germinative seedling growth in Arabidopsis. Plant Cell Physiol. 2015;56(7):1374–1387. doi:10.1093/pcp/pcv056.
  • Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Cacas JL, Chardot T, Gallois JL, D’Andrea S. PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in arabidopsis. Plant Cell. 2018;30(9):2116–2136. doi:10.1105/tpc.18.00275.
  • Kretzschmar FK, Mengel LA, Müller AO, Schmitt K, Blersch KF, Valerius O, Braus GH, Ischebeck T. PUX10 is a lipid droplet-localized scaffold protein that interacts with CELL DIVISION CYCLE48 and is involved in the degradation of lipid droplet proteins. Plant Cell. 2018;30(9):2137–2160. doi:10.1105/tpc.18.00276.
  • Hanano A, Bessoule JJ, Heitz T, Blee E. Involvement of the caleosin/peroxygenase RD20 in the control of cell death during Arabidopsis responses to pathogens. Plant Signal Behav. 2015;10(4):e991574. doi:10.4161/15592324.2014.991574.
  • Hanano A, Blée E, Murphy DJ. Caleosin/Peroxygenases: multifunctional proteins in plants. Ann Bot. 2023;131(3):387–409. doi:10.1093/aob/mcad001.
  • Fernández-Santos R, Izquierdo Y, López A, Muñiz L, Martínez M, Cascón T, Hamberg M, Castresana C. Protein profiles of lipid droplets during the hypersensitive defense response of Arabidopsis against Pseudomonas infection. Plant Cell Physiol. 2020;61(6):1144–1157. doi:10.1093/pcp/pcaa041.
  • Jolivet P, Roux E, D’Andrea S, Davanture M, Negroni L, Zivy M, Chardot T. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem. 2004;42(6):501–509. doi:10.1016/j.plaphy.2004.04.006.
  • Jolivet P, Acevedo F, Boulard C, d’Andréa S, Faure JD, Kohli A, Nesi N, Valot B, Chardot T. Crop seed oil bodies: from challenges in protein identification to an emerging picture of the oil body proteome. Proteomics. 2013;13(12–13):1836–1849. doi:10.1002/pmic.201200431.
  • Gattolin S, Sorieul M, Frigerio L. Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant. 2011;4(1):180–189. doi:10.1093/mp/ssq051.
  • Acevedo F, Rubilar M, Shene C, Navarrete P, Romero F, Rabert C, Jolivet P, Valot B, Chardot T. Seed oil bodies from Gevuina avellana and Madia sativa. J Agric Food Chem. 2012;60(28):6994–7004. doi:10.1021/jf301390d.
  • Zhi Y, Taylor MC, Campbell PM, Warden AC, Shrestha P, El Tahchy A, Rolland V, Vanhercke T, Petrie JR, White RG. et al. Comparative lipidomics and proteomics of lipid droplets in the mesocarp and seed tissues of Chinese Tallow (Triadica sebifera). Front Plant Sci. 2017;8:1339. doi:10.3389/fpls.2017.01339.
  • Poxleitner M, Rogers SW, Lacey Samuels A, Browse J, Rogers JC. A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J. 2006;47(6):917–933. doi:10.1111/j.1365-313X.2006.02845.x.
  • Veerabagu M, Paul LK, PL R, van der Schoot C. Plant lipid bodies traffic on actin to plasmodesmata motorized by Myosin XIs. Int J Mol Sci. 2020;21(4):1422. doi:10.3390/ijms21041422.
  • Veerabagu M, Rinne PLH, Skaugen M, Paul LK, van der Schoot C. Lipid body dynamics in shoot meristems: production, enlargement, and putative organellar interactions and plasmodesmal targeting. Front Plant Sci. 2021;12:674031. doi:10.3389/fpls.2021.674031.
  • Scholz P, Chapman KD, Mullen RT, Ischebeck T. Finding new friends and revisiting old ones – how plant lipid droplets connect with other subcellular structures. New Phytol. 2022;236(3):833–838. doi:10.1111/nph.18390.
  • Frandsen GI, Mundy J, Tzen JT. Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant. 2001;112(3):301–307. doi:10.1034/j.1399–3054.2001.1120301.x.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651–681. doi:10.1146/annurev.arplant.59.032607.092911.
  • David A, Yadav S, Bhatla SC. Sodium chloride stress induces nitric oxide accumulation in root tips and oil body surface accompanying slower oleosin degradation in sunflower seedlings. Physiol Plant. 2010;140(4):342–8354. doi:10.1111/j.1399-3054.2010.01408.x.
  • Mukherjee S, David A, Yadav S, Baluška F, Bhatla SC. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant. 2014;152(4):714–728. doi:10.1111/ppl.12218.
  • Alencar NLM, Gadelha CG, Gallão MI, Dolder MAH, Prisco JT, Gomes-Filho E. Ultrastructural and biochemical changes induced by salt stress in Jatropha curcas seeds during germination and seedling development. Funct Plant Biol. 2015;42(9):865–874. doi:10.1071/FP15019.
  • Tailor A, Tandon R, Bhatla SC. Nitric oxide modulates polyamine homeostasis in sunflower seedling cotyledons under salt stress. Plant Signal Behav. 2019;14(11):1667730. doi:10.1080/15592324.2019.1667730.
  • Alcázar R, Bueno M, Tiburcio AF. Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells. 2020;9(11):2373. doi:10.3390/cells9112373.
  • Gill SS, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signal Behav. 2010;5(1):26–33. doi:10.4161/psb.5.1.10291.
  • Naka Y, Watanabe K, Sagor GH, Niitsu M, Pillai MA, Kusano T, Takahashi Y. Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem. 2010;48(7):527–533. doi:10.1016/j.plaphy.2010.01.013.
  • Tailor A, Bhatla SC. Polyamine homeostasis modulates plasma membrane- and tonoplast-associated aquaporin expression in etiolated salt-stressed sunflower (Helianthus annuus L.) seedlings. Protoplasma. 2021;258(3):661–672. doi:10.1007/s00709-020-01589-8.
  • Hummel I, Couée I, El Amrani A, Martin-Tanguy J, Hennion F. Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. J Exp Bot. 2002;53(373):1463–1473. doi:10.1093/jexbot/53.373.1463.
  • Hashem AM, Moore S, Chen S, Hu C, Zhao Q, Elesawi IE, Feng Y, Topping JF, Liu J, Lindsey K. et al. Putrescine depletion affects Arabidopsis root meristem size by modulating auxin and cytokinin signaling and ROS accumulation. Int J Mol Sci. 2021;22(8):4094. doi:10.3390/ijms22084094.
  • Jamdar SC, Cao WF, Samaniego E. Relationship between adipose polyamine concentrations and triacylglycerol synthetic enzymes in lean and obese Zucker rats. Enzyme Protein. 1996;49(4):222–230. doi:10.1159/000468632.
  • Büyükushu N, Ӧztürk RI. Polyamine metabolism and obesity: polyamine metabolic enzymes involved in obesity. Acta Pharm Sci. 2018;56(2):85–91. doi:10.23893/1307-2080.APS.05613.
  • Tsujita T, Takaichi H, Takaku T, Sawai T, Yoshida N, Hiraki J. Inhibition of lipase activities by basic polysaccharide. J Lipid Res. 2007;48(2):358–365. doi:10.1194/jlr.M600258-JLR200.