552
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

The same boat, different storm: stress volatile emissions in response to biotrophic fungal infections in primary and alternate hosts

, & ORCID Icon
Article: 2217030 | Received 16 Mar 2023, Accepted 17 May 2023, Published online: 26 May 2023

References

  • Huang J, Cardoza YJ, Schmelz EA, Raina R, Engelberth J, Tumlinson JH. Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta. 2003;217(5):767–6. doi:10.1007/s00425-003-1039-y.
  • Niinemets Ü, Kännaste A, Copolovici L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci. 2013;4. doi:10.3389/fpls.2013.00262.
  • Kännaste A, Jürisoo L, Runno-Paurson E, Kask K, Talts E, Pärlist P, Drenkhan R, Niinemets Ü. Impacts of Dutch elm disease–causing fungi on foliage photosynthetic characteristics and volatiles in Ulmus species with different pathogen resistance. Tree Physiol. 2023;43(1):57–74. doi:10.1093/treephys/tpac108.
  • Matsui K, Engelberth J. Green leaf volatiles—the forefront of plant responses against biotic attack. Plant Cell Physiol. 2022;63(10):1378–1390. doi:10.1093/pcp/pcac117.
  • Jiang Y, Ye J, Li S, Niinemets Ü. Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence. J Exp Bot. 2017;68(16):4679–4694. doi:10.1093/jxb/erx244.
  • Niinemets Ü, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G. Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytol. 2002;153(2):243–256. doi:10.1046/j.0028-646X.2001.00323.x.
  • Niinemets Ü, Rasulov B, Talts E. CO2 -responsiveness of leaf isoprene emission: why do species differ? Plant, Cell & Environment. 2021;44(9):3049–3063. doi:10.1111/pce.14131.
  • Misztal P, Hewitt C, Wildt J, Blande JD, Eller ASD, Fares S, Gentner DR, Gilman JB, Graus M, Greenberg J. et al. Atmospheric benzenoid emissions from plants rival those from fossil fuels. null. 2015;5(1):1–10. doi:10.1038/srep12064.
  • Zhang J, He L, Dong J, Zhao C, Wang Y, Tang R, Wang W, Ji Z, Cao Q, Xie H. et al. Integrated metabolic and transcriptional analysis reveals the role of carotenoid cleavage dioxygenase 4 (IbCCD4) in carotenoid accumulation in sweetpotato tuberous roots. Biotechnol Biofuels. 2023;16(1):1645. doi:10.1186/s13068-023-02299-y.
  • Barrett LG, Thrall PH, Burdon JJ, Nicotra AB, Linde CC. Population structure and diversity in sexual and asexual populations of the pathogenic fungus Melampsora lini. Mol Ecol. 2008;17(14):3401–3415. doi:10.1111/j.1365-294X.2008.03843.x.
  • Bayon C, Pei MH, Ruiz C, Hunter T, Karp A, Tubby I. Genetic structure and population dynamics of a heteroecious plant pathogen Melampsora larici‐epitea in short‐rotation coppice willow plantations. Mol Ecol. 2009;18(14):3006–3019. doi:10.1111/j.1365-294X.2009.04255.x.
  • Huang S, Zuo S, Zheng D, Liu Y, Du Z, Kang Z, Zhao J. Three formae speciales of Puccinia striiformis were identified as heteroecious rusts based on completion of sexual cycle on Berberis spp. under artificial inoculation. Phytopathology Research. 2019;1(1):1–9. doi:10.1186/s42483-019-0021-y.
  • Jiang Y, Ye J, Veromann LL, Niinemets Ü, Schnitzler J-P. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. Tree Physiol. 2016;36(7):856–872. doi:10.1093/treephys/tpw035.
  • Toome M, Randjärv P, Copolovici L, Niinemets UÜ, Heinsoo K, Luik A, Steffen, MN. Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta. 2010;232(1):235–243. doi:10.1007/s00425-010-1169-y.
  • Eberl F, Hammerbacher A, Gershenzon J, Unsicker SB. Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. New Phytol. 2018;220(3):760–772. doi:10.1111/nph.14565.
  • Grimmer MK, John Foulkes M, Paveley ND. Foliar pathogenesis and plant water relations: a review. J Exp Bot. 2012;63(12):4321–4331. doi:10.1093/jxb/ers143.
  • Sharkey TD, Wiberley AE, Donohue AR. Isoprene emission from plants: why and how. Annal Of Botany. 2008;101(1):5–18. doi:10.1093/aob/mcm240.
  • Liu M, Hambleton S. Laying the foundation for a taxonomic review of Puccinia coronata s.L. in a phylogenetic context. Mycol Progress. 2013;12(1):63–89. doi:10.1007/s11557-012-0814-1.
  • Fei W, Liu Y. Biotrophic fungal pathogens: a critical overview. Appl Biochem Biotechnol. 2023;195(1):1–16. doi:10.1007/s12010-022-04087-0.
  • Jain A, Sarsaiya S, Wu Q, Lu Y, Shi J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered. 2019;10(1):409–424. doi:10.1080/21655979.2019.1649520.
  • Bettgenhaeuser J, Gilbert B, Ayliffe M, Moscou MJ. Nonhost resistance to rust pathogens – a continuation of continua. Frontiers Of Plant Science. 2014;5:664. doi:10.3389/fpls.2014.00664.
  • Sulaiman HY, Runno-Paurson E, Kaurilind E, Niinemets Ü, Lunn J. Differential impact of crown rust (Puccinia coronata) infection on photosynthesis and volatile emissions in the primary host Avena sativa and the alternate host Rhamnus frangula. J Exp Bot. 2023;74(6):2029–2046. doi:10.1093/jxb/erad001.
  • Menzies JG, Xue A, Gruenke J, Dueck R, Deceuninck S, Chen Y. Virulence of Puccinia coronata var avenae f. sp. avenae (oat crown rust) in Canada during 2010 to 2015. Canadian Journal Of Plant Pathology. 2019;41(3):379–391. doi:10.1080/07060661.2019.1577300.
  • Sowa S and Paczos-Grzęda E. (2021). Virulence Structure of Puccinia coronata f. sp. avenae and Effectiveness of Pc Resistance Genes in Poland During 2017–2019. Phytopathology®, 111(7), 1158–1165. 10.1094/PHYTO-10-20-0457-R
  • Luo X, Keenan TF, Chen JM, Croft H, Colin Prentice I, Smith NG, Walker AP, Wang H, Wang R, Xu C. et al. Global variation in the fraction of leaf nitrogen allocated to photosynthesis. null. 2021;12(1):4866. doi:10.1038/s41467-021-25163-9.
  • Rajashekar CB. Elevated CO2 levels affect phytochemicals and nutritional quality of food crops. American Journal Of Plant Sciences. 2018;9(2):150–162. doi:10.4236/ajps.2018.92013.
  • Turner JG, Ellis C, Devoto A. The Jasmonate Signal Pathway. Plant Cell. 2002;14(suppl 1):s153–64. doi:10.1105/tpc.000679.
  • Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui C-M, Nayak SC, van der Meer JR. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev. 2016;40(2):182–207. doi:10.1093/femsre/fuv045.
  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJA, Dicke M. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot. 2009;60(9):2575–2587. doi:10.1093/jxb/erp101.
  • Crampton BG, Hein I, Berger DK. Salicylic acid confers resistance to a biotrophic rust pathogen, Puccinia substriata, in pearl millet (Pennisetum glaucum). Mol Plant Pathol. 2009;10(2):291–304. doi:10.1111/j.1364-3703.2008.00532.x.
  • Li N, Han X, Feng D, Yuan D, Huang LJ. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International Journal Of Molecular Science. 2019;20(3):E671. doi:10.3390/ijms20030671.
  • Kunkel B N and Brooks D M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4), 325–331. 10.1016/S1369-5266(02)00275-3
  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 2006;140(1):249–262. doi:10.1104/pp.105.072348.
  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K. Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav. 2013;8(6):e24260. doi:10.4161/psb.24260.
  • Ullah C, Schmidt A, Reichelt M, Tsai CJ, Gershenzon J. Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar. New Phytol. 2022;235(2):701–717. doi:10.1111/nph.18148.
  • Mahmud S, Ullah C, Kortz A, Bhattacharyya S, Yu P, Gershenzon J, Vothknecht UC. Constitutive expression of JASMONATE RESISTANT 1 induces molecular changes that prime the plants to better withstand drought. Plant, Cell And& Environment. 2022;45(10):2906–2922. doi:10.1111/pce.14402.
  • Liu B, Zhang L, Rusalepp L, Kaurilind E, Sulaiman HY, Püssa T, Niinemets Ü. Heat priming improved heat tolerance of photosynthesis, enhanced terpenoid and benzenoid emission and phenolics accumulation in Achillea millefolium. Plant, Cell & Environment. 2021;44(7):2365–2385. doi:10.1111/pce.13830.
  • Sulaiman HY, Liu B, Kaurilind E, Niinemets Ü. Phloem-feeding insect infestation antagonizes volatile organic compound emissions and enhances heat stress recovery of photosynthesis in Origanum vulgare. Environ Exp Bot. 2021;189:104551. doi:10.1016/j.envexpbot.2021.104551.
  • Zurbriggen MD, Carrillo N, Hajirezaei MR. ROS signaling in the hypersensitive response. Plant Signal Behav. 2010;5(4):393–396. doi:10.4161/psb.5.4.10793.
  • Copolovici L, Väärtnõu F, Estrada MP, Niinemets Ü. Oak powdery mildew (Erysiphe alphitoides) induced volatile emissions scale with the degree of infection in Quercus robur. Tree Pphysiology. 2014;34(12):1399. doi:10.1093/treephys/tpu091.
  • Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler JP. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ. 2006;40:138–151. doi:10.1016/j.atmosenv.2005.09.091.
  • Rasulov B, Bichele I, Laisk A, Niinemets Ü. Competition between isoprene emission and pigment synthesis during leaf development in aspen. Plant, Cell And& Environment. 2014;37(3):724–741. doi:10.1111/pce.12190.
  • Erb M. Volatiles as inducers and suppressors of plant defense and immunity—origins, specificity, perception and signaling. Curr Opin Plant Biol. 2018;44:117–121. doi:10.1016/j.pbi.2018.03.008.
  • Niinemets Ü. Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci. 2010;15(3):145–153. doi:10.1016/j.tplants.2009.11.008.
  • Divon HH, Fluhr R. Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett. 2007;266(1):65–74. doi:10.1111/j.1574-6968.2006.00504.x.
  • Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR, Frank TD, DeLucia EH. Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia. 2010;149(2):221–232. doi:10.1007/s00442-006-0444-x.
  • Hammond-Kosack KE, Rudd JJ. Plant resistance signalling hijacked by a necrotrophic fungal pathogen. Plant Signaling And& Behavior. 2008;3(11):993–995. doi:10.4161/psb.6292.
  • Vandendriessche T, Keulemans J, Geeraerd A, Nicolai BM, Hertog ML. Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol. 2012;32:406–414.
  • Berger S, Sinha AK, Roitsch T. Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot. 2007;58(15–16):4019–4026. doi:10.1093/jxb/erm298.
  • Castelyn HD, Appelgryn JJ, Mafa MS, Pretorius ZA, Visser B. Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australasian Plant Pathol. 2015;44(2):245–254. doi:10.1007/s13313-014-0336-1.
  • Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol. 2002;5(4):325–331. doi:10.1016/S1369-5266(02)00275-3.