736
Views
3
CrossRef citations to date
0
Altmetric
Commentary

P-ring: The conserved nature of phosphorus enriched cells in seedling roots of distantly related species

ORCID Icon & ORCID Icon
Article: 2217389 | Received 04 Apr 2023, Accepted 13 May 2023, Published online: 18 Jun 2023

References

  • Peterson CA. Exodermal Casparian bands: their significance for ion uptake by roots. Physiol Plant. 1988;72(1):204–5. doi:10.1111/j.1399-3054.1988.tb06644.x.
  • Cui B, Liu R, Flowers TJ, Song J. Casparian bands and suberin lamellae: key targets for breeding salt tolerant crops? Environ Exp Bot. 2021;191:104600. doi:10.1016/j.envexpbot.2021.104600.
  • Guo Y, Wang Y, Chen H, Du Q, Wang Z, Gong X, Li WX, Li W-X. Nitrogen supply affects ion homeostasis by modifying root Casparian strip formation through the miR528-LAC3 module in maize. Plant Commun. 2023;100553:100553. doi:10.1016/j.xplc.2023.100553.
  • Ranathunge K, Steudle E, Lafitte R. A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant, Cell & Environ. 2005;28(11):1450–1462. doi:10.1111/j.1365-3040.2005.01391.x.
  • Wang Y, Cao Y, Liang X, Zhuang J, Wang X, Qin F, Jiang C. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun. 2022;13(1):2222. doi:10.1038/s41467-022-29809-0.
  • Deng Y, Shang W, Zhang X, Guo J, Wang Y, Zhang Z, Xie L, Li Z, Xie L. Quantification of plasmodesmata frequency under three-dimensional view using focused ion beam-scanning electron microscopy and image analysis. Micron. 2023;103413:103413. doi:10.1016/j.micron.2023.103413.
  • Kirk P, Benitez-Alfonso Y. Plasmodesmata structural components and their role in signaling and plant development. Plasmodesmata: Methods And Protocols. 2022;2457:3–22.
  • Lim G-H, Shine MB, de Lorenzo L, Yu K, Cui W, Navarre D, Hunt A, Lee J-Y, Kachroo A, Kachroo P. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host & Microbe. 2016;19(4):541–549. doi:10.1016/j.chom.2016.03.006.
  • McLean BG, Hempel FD, Zambryski PC. Plant intercellular communication via plasmodesmata. Plant Cell. 1997;9(7):1043. doi:10.1105/tpc.9.7.1043.
  • Roberts A, OPARKA KJ. Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 2003;26(1):103–124. doi:10.1046/j.1365-3040.2003.00950.x.
  • Acharya A. Tissue specific nutrient localization in the arachis hypogaea seedling root. University of Louisiana at Lafayette; 2021a.
  • Pesacreta TC, Acharya A, Hasenstein KH. Endogenous nutrients are concentrated in specific tissues in the Zea mays seedling. Protoplasma. 2021;258(4):863–878. doi:10.1007/s00709-021-01606-4.
  • Pesacreta TC, Hasenstein KH. Tissue accumulation patterns and concentrations of potassium, phosphorus, and carboxyfluorescein translocated from pine seed to the root. Planta. 2018;248(2):393–407. doi:10.1007/s00425-018-2897-7.
  • Acharya A, Pesacreta TC. Localization of seed-derived and externally supplied nutrients in peanut seedling root. Theor Exp Plant Physiol. 2022;34(1):1–15. doi:10.1007/s40626-021-00227-9.
  • Fageria NK, Filho MB, Moreira A, Guimarães CM. Foliar fertilization of crop plants. J Plant Nutr. 2009;32(6):1044–1064. doi:10.1080/01904160902872826.
  • Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Hu CX, Poudel A, Pun AB, Bhat MA, Mandal DL. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis. 2021;84(1):19–37. doi:10.1007/s13199-021-00756-6.
  • Feddermann N, Finlay R, Boller T, Elfstrand M. Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol. 2010;3(1):1–8. doi:10.1016/j.funeco.2009.07.003.
  • Berbee ML, James TY, Strullu-Derrien C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu Rev Microbiol. 2017;71(1):41–60. doi:10.1146/annurev-micro-030117-020324.
  • Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, Arnold AE, Lewis LA, Swofford DL, Hibbett D, Hilu K. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun. 2018;9(1):5451. doi:10.1038/s41467-018-07849-9.
  • Lambers H. Phosphorus acquisition and utilization in plants. Annu Rev Plant Biol. 2022;73(1):17–42. doi:10.1146/annurev-arplant-102720-125738.
  • Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 1998;116(2):447–453. doi:10.1104/pp.116.2.447.
  • Kohli SK, Kaur H, Khanna K, Handa N, Bhardwaj R, Rinklebe J, Ahmad P. Boron in plants: uptake, deficiency and biological potential. Plant Growth Regul. 2022;100(2):1–16. doi:10.1007/s10725-022-00844-7.
  • Beattie JR, Maguire C, Gilchrist S, Barrett LJ, Cross CE, Possmayer F, Ennis M, Elborn JS, Curry WJ, McGarvey JJ, Schock BC. The use of Raman microscopy to determine and localize vitamin E in biological samples. Faseb J. 2007;21(3):766–776. doi:10.1096/fj.06-7028com.
  • Gierlinger N, Schwanninger M. The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy. 2007;21(2):69–89. doi:10.1155/2007/498206.
  • Li M, Nawa Y, Ishida S, Kanda Y, Fujita S, Fujita K. Label-free chemical imaging of cytochrome P450 activity by Raman microscopy. Commun Biol. 2022;5(1):778. doi:10.1038/s42003-022-03713-1.
  • Palonpon AF, Sodeoka M, Fujita K. Molecular imaging of live cells by Raman microscopy. Curr Opin Chem Biol. 2013;17(4):708–715. doi:10.1016/j.cbpa.2013.05.021.
  • Prats‐Mateu B, Gierlinger N. Tip in–light on: advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples. Microsc Res Tech. 2017;80(1):30–40. doi:10.1002/jemt.22744.
  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci. 2008;105(25):8790–8794. doi:10.1073/pnas.0712307105.
  • Pérez-Torres CA, Lopez-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell. 2008;20(12):3258–3272. doi:10.1105/tpc.108.058719.
  • Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira AM, Puthur JT, Abdi G, Sarraf M, Hasanuzzaman M. Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiol Bioch. 2022;172:56–69. doi:10.1016/j.plaphy.2022.01.001.
  • Manning DA. Mineral sources of potassium for plant nutrition. A review. Agron Sustain Dev. 2010;30(2):281–294. doi:10.1051/agro/2009023.
  • Prajapati K, Modi HA. The importance of potassium in plant growth–a review. Indian J Plant Sci. 2012;1(2–03):177–186. doi:10.4236/ajps.2012.32021.
  • Wang M, Zheng Q, Shen Q, Guo S. The critical role of potassium in plant stress response. Int J Mol Sci. 2013;14(4):7370–7390. doi:10.3390/ijms14047370.
  • Hetherington AJ, Dolan L. Stepwise and independent origins of roots among land plants. Nature. 2018;561(7722):235–238. doi:10.1038/s41586-018-0445-z.
  • De-Jesús-García, R., Rosas, U., & Dubrovsky, J. G. (2020). The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. Functional Plant Biology, 47(5), 383-397.
  • Barberon M, Geldner N. Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiol. 2014;166(2):528–537. doi:10.1104/pp.114.246124.
  • Wang, Y. H., Acharya, A., Burrell, A. M., Klein, R. R., Klein, P. E., & Hasenstein, K. H. (2013). Mapping and candidate genes associated with saccharification yield in sorghum. Genome, 56(11), 659–665.
  • Boote KJ, Kropff MJ, Bindraban PS. Physiology and modelling of traits in crop plants: implications for genetic improvement. Agric Syst. 2001;70(2–3):395–420. doi:10.1016/S0308-521X(01)00053-1.
  • Meister R, Rajani MS, Ruzicka D, Schachtman DP. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 2014;19(12):779–788. doi:10.1016/j.tplants.2014.08.005.
  • Acharya, A. Out of Sight, Out of Mind. Crop Science. https://doi.org/10.1002/csc2.21020
  • Acharya A. SMART-A prototype design for sustainable method of agriculture using root transition. 2022. doi:10.21203/rs.3.rs-1514592/v2 .
  • Andrade D, Pasini F, Scarano FR. Syntropy and innovation in agriculture. Curr Opin Env Sust. 2020;45:20–24. doi:10.1016/j.cosust.2020.08.003.
  • Acharya A. Global agriculture management system. Crop Sci. 2021;61(5):2861–2862. doi:10.1002/csc2.20499.
  • Gomiero T, Pimentel D, Paoletti MG. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. CRC Crit Rev Plant Sci. 2011;30(1–2):95–124. doi:10.1080/07352689.2011.554355.