975
Views
2
CrossRef citations to date
0
Altmetric
Research Article

ChIFNα regulates adventitious root development in Lotus japonicus via an auxin-mediated pathway

, , , , , ORCID Icon & ORCID Icon show all
Article: 2218670 | Received 21 Mar 2023, Accepted 11 May 2023, Published online: 08 Jun 2023

References

  • Tahir MM, Chen S, Ma X, Li S, Zhang X, Shao Y, Shalmani A, Zhao C, Bao L, Zhang D. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Plant Physiol Bioch. 2021a;165:123–12. doi:10.1016/j.plaphy.2021.05.015.
  • Li K, Wei Y-H, Wang R-H, Mao J-P, Tian H-Y, Chen S-Y, Li S-H, Tahir M-M, Zhang D. Mdm-MIR393b-mediated adventitious root formation by targeted regulation of MdTIR1A expression and weakened sensitivity to auxin in apple rootstock. Plant Sci. 2021;308:110909. doi:10.1016/j.plantsci.2021.110909.
  • Yamashita H, Nishina Y, Komori N, Kamoshita M, Oya Y, Okuno K, Morita A, Ikka T. Cesium uptake and translocation from tea cutting roots (Camellia sinensis L.). J Environ Radioactivity. 2021;235-236:106655. doi:10.1016/j.jenvrad.2021.106655.
  • Yang S, Ma S, Qiu R, Guang Q, Lv Y, Dong Y, Wu J, Song L. Comparative analysis of RNA-Seq data reveals adventitious root development is mediated by ChIFNα in lotus japonicus. Biotechnol Biotechnol Equip. 2020;35(1):179–195. doi:10.1080/13102818.2020.1859946.
  • Zhai S, Cai W, Xiang Z-X, Chen C-Y, Lu Y-T, Yuan T-T. PIN3-mediated auxin transport contributes to blue light-induced adventitious root formation in Arabidopsis. Plant Sci. 2021;312:111044. doi:10.1016/j.plantsci.2021.111044.
  • Liu G, Zhao J, Liao T, Wang Y, Guo L, Yao Y, Cao J. Histological dissection of cutting-inducible adventitious rooting in Platycladus orientalis reveals developmental endogenous hormonal homeostasis. null. 2021;170:113817. doi:10.1016/j.indcrop.2021.113817.
  • Zhang J, Zhou T, Zhang C, Zheng W, Li J, Jiang W, Xiao C, Wei D, Yang C, Xu R, et al. Gibberellin disturbs the balance of endogenesis hormones and inhibits adventitious root development of Pseudostellaria heterophylla through regulating gene expression related to hormone synthesis. Saudi J Biol Sci. 2021;28:135–147. doi:10.1016/j.sjbs.2020.09.022.
  • Mignolli F, Mariotti L, Picciarelli P, Vidoz ML. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.). J Plant Physiol. 2017;213:55–65. doi:10.1016/j.jplph.2017.02.010.
  • Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell. 2014;26:1081–1093. doi:10.1105/tpc.114.122887.
  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, 2011. The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences 108, 18512–18517. doi:10.1073/pnas.1108434108.
  • Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato J, et al. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J. 2014;77:352–366. doi:10.1111/tpj.12399.
  • Wang C-K, Han P-L, Zhao Y-W, Ji X-L, Yu J-Q, You C-X, Hu D-G, Hao Y-J. Auxin regulates anthocyanin biosynthesis through the auxin repressor protein MdIAA26. Biochem Bioph Res Co. 2020a;533:717–722. doi:10.1016/j.bbrc.2020.09.065.
  • Zhang W, Lan J, Chen X. Transcription analysis of Ganoderma lucidum reveals candidate genes and pathways in response to excess exogenous indoleacetic acid (IAA). Mycoscience. 2020;61:226–234. doi:10.1016/j.myc.2020.05.001.
  • Li YH, Mo YW, Wang SB, Zhang Z. Auxin efflux carriers, MiPINs, are involved in adventitious root formation of mango cotyledon segments. Plant Physiol Biochem. 2020;150:15–26. doi:10.1016/j.plaphy.2020.02.028.
  • Shen CJ, Bai YH, Wang SK, Zhang SN, Wu YR, Chen M, Jiang DA, Qi YH. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J. 2010;277(14):2954–2969. doi:10.1111/j.1742-4658.2010.07706.x.
  • SuiKang W, ChenJia S, SaiNa Z, YanXia X, DeAn J. Analysis of subcellular localization of auxin carriers PIN, AUX/LAX and PGP inSorghum bicolor. Plant Signal Behav. 2014;6:2954–2969.
  • Liscum E, Reed J. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol. 2002;49:387–400. doi:10.1023/A:1015255030047.
  • Powers SK, Holehouse AS, Korasick DA, Schreiber KH, Strader LC, Jing H, Emenecker R, Han S, Tycksen E, Hwang I, et al. Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Mol Cell. 2019;76(1):1–14. doi:10.1016/j.molcel.2019.06.044.
  • Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an Auxin receptor. Nature. 2005a;435:446–451. doi:10.1038/nature03542.
  • Kepinski S, Leyser O. The F-box protein TIR1 is an auxin receptor. Nature. 2005b;435(7041):441–445. doi:10.1038/nature03542.
  • Chapman EJ, Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet. 2009;43(1):265–285. doi:10.1146/annurev-genet-102108-134148.
  • Guilfoyle TJ, Hagen G. Auxin response factors. J Plant Growth Regul. 2001;20:281–291. doi:10.1007/s003440010026.
  • Feng L, Li G, He Z, Han W, Sun J, Huang F, Di J, Chen Y. The ARF, GH3, and Aux/IAA gene families in castor bean (Ricinus communis L.): genome-wide identification and expression profiles in high-stalk and dwarf strains. null. 2019;141:111804. doi:10.1016/j.indcrop.2019.111804.
  • Jain M, Kaur N, Tyagi AK, Khurana JP. The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics. 2006;6(1):36–46. doi:10.1007/s10142-005-0142-5.
  • Wojtaczka P, Ciarkowska A, Starzynska E, Ostrowski M. The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. Phytochemistry. 2022;194:113039. doi:10.1016/j.phytochem.2021.113039.
  • Tahir MM, Li S, Mao J, Liu Y, Li K, Zhang X, Lu X, Ma X, Zhao C, Zhang D. High nitrate inhibited adventitious roots formation in apple rootstock by altering hormonal contents and miRnas expression profiles. Sci Hortic (Amsterdam). 2021b;286:110230. doi:10.1016/j.scienta.2021.110230.
  • Wu CH, Popova EV, Hahn EJ, Paek KY. Linoleic and α-linolenic fatty acids affect biomass and secondary metabolite production and nutritive properties of Panax ginseng adventitious roots cultured in bioreactors. Biochem Eng J. 2009;47:109–115. doi:10.1016/j.bej.2009.07.011.
  • Yu KW, Murthy HN, Jeong CS, Hahn EJ, Paek KY. Organic germanium stimulates the growth of ginseng adventitious roots and ginsenoside production. Process Biochem. 2005;40:2959–2961. doi:10.1016/j.procbio.2005.01.015.
  • Hao YJ, An XL, Sun HD, Piao XC, Gao R, Lian ML. Ginsenoside synthesis of adventitious roots in Panax ginseng is promoted by fungal suspension homogenate of Alternaria panax and regulated by several signaling molecules. null. 2016;150:112414. doi:10.1016/j.indcrop.2020.112414.
  • Li J, Liu S, Wang J, Li J, Liu D, Li J, Gao W. Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng C. A. Mey. J Biotechnol. 2016;239:106–114. doi:10.1016/j.jbiotec.2016.10.011.
  • Cheng C, Li D, Wang B, Liao B, Qu P, Liu W, Zhang Y, Lü P. Piriformospora indica colonization promotes the root growth of Dimocarpus longan seedlings. Sci Hortic (Amsterdam). 2022;301:111137. doi:10.1016/j.scienta.2022.111137.
  • Fredericksen B, Keller L, Brian C, Fornek J, Katze M. Establishment and maintenance of the innate antiviral response to west Nile virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol. 2008;82(2):15–15. doi:10.1128/JVI.01305-07.
  • Gabriele L, Ozato K. The role of the interferon regulatory factor (IRF) family in dendritic cell development and function. Cytokine Growth Factor Rev. 2007;18(5–6):503–510. doi:10.1016/j.cytogfr.2007.06.008.
  • Sawahel WA. The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation. Cell Mol Biol Lett. 2002;7:19–29.
  • Devash Y, Biggs S, Sela I. Multiplication of tobacco mosaic virus in tobacco leaf disks is inhibited by (2′-5′) oligoadenylate. Science. 1982;216:1415–1416. doi:10.1126/science.6178155.
  • Orchansky P, Sela RI, 1982. [Part 1: biological sciences] || human interferons protect plants from virus infection. Proceedings of the National Academy of Sciences of the United States of America 79, 2278–2280. doi:10.1073/pnas.79.7.2278.
  • Kulaeva ON, Fedina AB, Burkhanova EA, Karavaiko NN, Karpeisky MY, Kaplan IB, Taliansky ME, Atabekov JG. Biological activities of human interferon and 2′–5′ oligoadenylates in plants. Plant Mol Biol. 1992;20(3):383–393. doi:10.1007/BF00040598.
  • Matvieieva N, Kudryavets YI, Likhova A, Shakhovskij A, Bezdenezhnykh N, Kvasko EY. Antiviral activity of extracts of transgenic chicory and lettuce plants with the human interferon α2b gene. Cytol Genet. 2012;46(5):285–290. doi:10.3103/S0095452712050076.
  • Song L, Zhao DG, Tian XE, Wu YJ. Expression of ChIFN-α in transgenic tobacco causes resistance to tobacco mosaic virus. J Agric Sci Technol. 2010;12(1):118–122. doi:10.3969/j.issn.1008-0864.2010.01.20.
  • He Z, Tan JS, Lai OM, Ariff AB. Optimization of conditions for the single step IMAC purification of miraculin from Synsepalum dulcificum. Food Chem. 2015;181:19–24. doi:10.1016/j.foodchem.2014.11.166.
  • Pan R, Liu Y, Buitrago S, Jiang W, Gao H, Han H, Wu C, Wang Y, Zhang W, Yang X. Adventitious root formation is dynamically regulated by various hormones in leaf-vegetable sweet potato cuttings. J Plant Physiol. 2020;253:153267. doi:10.1016/j.jplph.2020.153267.
  • Zhao C, Zhang L, Zhang X, Xu Y, Wei Z, Sun B, Liang M, Li H, Hu F, Xu L. Regulation of endogenous phytohormones alters the fluoranthene content in Arabidopsis thaliana. Sci Total Environ. 2019;688:935–943. doi:10.1016/j.scitotenv.2019.06.384.
  • Chen R, Xu N, Yu B, Wu Q, Li X, Wang G, Huang J. The WUSCHEL-related homeobox transcription factor OsWOX4 controls the primary root elongation by activating OsAUX1 in rice. Plant Sci. 2020;298:110575. doi:10.1016/j.plantsci.2020.110575.
  • Sharma S, Singh HP, Batish DR, Kohli RK. Nitric oxide induced modulations in adventitious root growth, lignin content and lignin synthesizing enzymes in the hypocotyls of Vigna radiata. Plant Physiol Bioch. 2019;141:225–230. doi:10.1016/j.plaphy.2019.05.028.
  • Bassuk NL, Hunter LD, Howard BH. The apparent involvement of polyphenol oxidase and phloridzin in the production of apple rooting cofactors. Journal Of Pomology & Horticultural Science. 1981;56(4):313–322. doi:10.1080/00221589.1981.11515007.
  • Palme K, Nagy F. A new gene for auxin synthesis. Cell. 2008;133:31–32. doi:10.1016/j.cell.2008.03.014.
  • Friml J, Palme K. Polar auxin transport–old questions and new concepts? Auxin Mol Biol. 2002;49:273–284.
  • Guang Q, Song L, Zhao DG. Effect of low temperature stress on physiological responses of transgenic ChIFN-α Lotus Plant (Lotus corniculatus L.) to cold. Mol Plant Breed. 2015;13:2849–2853. doi:10.13271/j.mpb.013.002849.
  • Xiao FB, Dong YP, Zhang DS, Song L, Zhao DG. TMV resistance, growth and photosynthetic characteristics of transgenic tobacco with ChIFN genes 2021. Plant Physiology Journal. 2021;57:879–889. doi:10.13592/j.cnki.ppj.2020.0501.
  • Wang J, Zhang S, Fu Y, He T, Wang X. Analysis of dynamic global transcriptional atlas reveals common regulatory networks of hormones and photosynthesis across nicotiana varieties in response to long-term drought. Front Plant Sci. 2020b;11:672. doi:10.3389/fpls.2020.00672.
  • Abdel Latef AAH, Tahjib-Ul-Arif M, Rhaman MS. Exogenous auxin-mediated salt stress alleviation in faba bean (Vicia faba L.). Agronomy. 2021;11:547. doi:10.3390/agronomy11030547.
  • Liu W, Peng B, Song A, Zhang Y, Jiang J, Chen F. Sucrose-induced bud outgrowth in Chrysanthemum morifolium involves changes of auxin transport and gene expression. Sci Hortic (Amsterdam). 2022;296. doi:10.1016/j.scienta.2022.110904.
  • Kakiuchi Y, Gàlis I, Tamogami S, Wabiko H. Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene. Planta. 2006;223:237–247. doi:10.1007/s00425-005-0080-4.
  • Liao WB, Xiao HL, Zhang ML. Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground-cover chrysanthemum and associated biochemical changes. J Plant Growth Regul. 2010;29(3):338–348. doi:10.1007/s00344-010-9140-5.
  • Nag S, Saha K, Choudhuri MA. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J Plant Growth Regul. 2001;20:182–194. doi:10.1007/s003440010016.
  • Cui G, Zhao M, Zhang S, Wang Z, Meng M, Sun F, Zhang C, Xi Y. MicroRNA and regulation of auxin and cytokinin signalling during post-mowing regeneration of winter wheat (Triticum aestivum L.). Plant Physiol Biochem. 2020;155:769–779. doi:10.1016/j.plaphy.2020.08.032.
  • Pan J, Zhao F, Zhang G, Pan Y, Sun L, Bao N, Qin P, Chen L, Yu J, Zhang Y, et al. Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants. Journal Of Genetics And Genomics. 2019;46:133–140. doi:10.1016/j.jgg.2019.03.001.
  • Wan Abdullah WMAN, Tan N-P, Low L-Y, Loh J-Y, Wee C-Y, Md Taib AZ, Ong-Abdullah J, Lai K-S. Calcium lignosulfonate improves proliferation of recalcitrant indica rice callus via modulation of auxin biosynthesis and enhancement of nutrient absorption. Plant Physiol Bioch. 2021;161:131–142. doi:10.1016/j.plaphy.2021.01.046.
  • Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot. 2012;63:2853–2872. doi:10.1093/jxb/ers091.
  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C, 2000. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proceedings of the National Academy of Sciences 97, 14819–14824. doi:10.1073/pnas.260502697.
  • Geisler MM. A retro-perspective on auxin transport. Front Plant Sci. 2021;12:2160. doi:10.3389/fpls.2021.756968.
  • da Costa CT, Offringa R, Fett-Neto AG. The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings. Plant Sci. 2020;290:110294. doi:10.1016/j.plantsci.2019.110294.
  • López-González D, Costas-Gil A, Reigosa MJ, Araniti F, Sánchez-Moreiras AM. A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiol Bioch. 2020;151:378–390. doi:10.1016/j.plaphy.2020.03.047.
  • Lv Y, Qiu RG, Yang SM, WU JH, Song L. Identification and analysis of PIN gene family in lotus corniculatus. Journal Of Henan Agricultural Sciences. 2019;48(8):39–48. doi:10.15933/j.cnki.1004-3268.2019.08.00664.
  • Lakehal A, Chaabouni S, Cavel E, Le Hir R, Ranjan A, Raneshan Z, Novák O, Păcurar DI, Perrone I, Jobert F, et al. A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-Dependent auxin signaling in arabidopsis. Mol Plant. 2019;12:1499–1514. doi:10.1016/j.molp.2019.09.001.
  • Rigal A. Etude des mécanismes moléculaires impliqués dans la formation des racines adventives du peuplier : rôle du facteur de transcription PtAIL1. Revue d'histoire moderne. 2012;6:390.
  • Singh Vikash K., Jain R, Garg R. Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes. Front Plant Sci. 2015;5:789. doi:10.3389/fpls.2014.00789.
  • Ku S-J, Park J-Y, Ha S-B, Kim J. Overexpression of IAA1 with domain II mutation impairs cell elongation and cell division in inflorescences and leaves of Arabidopsis. J Plant Physiol. 2009;166:548–553. doi:10.1016/j.jplph.2008.07.006.
  • Kang NY, Lee HW, Kim J. The AP2/EREBP gene PUCHI co-acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis. Plant Cell Physiol. 2013;54:1326–1334. doi:10.1093/pcp/pct081.
  • Zhang H, Cao N, Dong C, Shang Q. Genome-wide identification and expression of ARF gene family during adventitious root development in hot pepper (Capsicum annuum). Horticultural Plant Journal. 2017;3:151–164. doi:10.1016/j.hpj.2017.07.001.
  • Zhang L, Guan R, Li G, Su K, Duan L, Sun W, Meng X, Wan H, Wang S, Chen S, et al. Genomic identification of ARF transcription factors and expression analysis in Cannabis sativa L. null. 2022;186:115118. doi:10.1016/j.indcrop.2022.115118.
  • Kepinski S, Leyser O. Auxin-induced SCFTIR1–Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci U S A. 2004;101(33):12381–12386. doi:10.1073/pnas.0402868101.
  • Fukaki H, Okushima Y, Tasaka M. Auxin‐mediated lateral root formation in higher plants, international review of cytology. Academic Press; 2007pp. 111–137. 10.1016/S0074-7696(07)56004-3
  • Fu J, Yu H, Li X, Xiao J, Wang S. Rice GH3 gene family: regulators of growth and development. Plant Signal Behav. 2011;6(4):570–574. doi:10.4161/psb.6.4.14947.
  • Sreevidya VS, Hernandez-Oane RJ, Gyaneshwar P, Lara-Flores M, Ladha JK, Reddy PM. Changes in auxin distribution patterns during lateral root development in rice. Plant Sci. 2010;178(6):531–538. doi:10.1016/j.plantsci.2010.03.004.
  • Guo R, Hu Y, Aoi Y, Hira H, Ge C, Dai X, Kasahara H, Zhao Y. Local conjugation of auxin by the GH3 amido synthetases is required for normal development of roots and flowers in Arabidopsis. Biochem Bioph Res Co. 2022;589:16–22. doi:10.1016/j.bbrc.2021.11.109.
  • Yin H, Li M, Lv M, Hepworth SR, Li D, Ma C, Li J, Wang SM. SAUR15 promotes lateral and adventitious root development via activating H + -ATPases and auxin biosynthesis. Plant Physiol. 2020;184(2):837–851. doi:10.1104/pp.19.01250.
  • Figueiredo MRAD, Strader LC. Intrinsic and extrinsic regulators of Aux/IAA protein degradation dynamics. Trends Biochem Sci. 2022;47(10):865–874. doi:10.1016/j.tibs.2022.06.004.