2,273
Views
2
CrossRef citations to date
0
Altmetric
Review

Role of Microbial Volatile Organic Compounds in Promoting Plant Growth and Disease Resistance in Horticultural Production

, , , , , & ORCID Icon show all
Article: 2227440 | Received 03 May 2023, Accepted 15 Jun 2023, Published online: 27 Jun 2023

References

  • Mari M, Bautista-Banos S, Sivakumar D. Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol. 2016;122:70–10. doi:10.1016/j.postharvbio.2016.04.014.
  • Russo A, Pollastri S, Ruocco M, Monti MM, Loreto F. Volatile organic compounds in the interaction between plants and beneficial microorganisms. Journal Of Plant Interactions. 2022;17(1):840–852. doi:10.1080/17429145.2022.2107243.
  • Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515(7528):505–511. doi:10.1038/nature13855.
  • Farrar K, Bryant D, Cope‐Selby N. Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J. 2014;12(9):1193–1206. doi:10.1111/pbi.12279.
  • Turner T, James E, Poole P. The plant microbiome. Genome Biol. 2013;14(6):1–10. doi:10.1186/gb-2013-14-6-209.
  • Andreote FD, Gumiere T, Durrer A. Exploring interactions of plant microbiomes. Scientia agrícola. 2014;71(6):528–539. doi:10.1590/0103-9016-2014-0195.
  • Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The plant microbiome: from ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74(1):81–100. doi:10.1146/annurev-micro-022620-014327.
  • Thomas G, Withall D, Birkett M. Harnessing microbial volatiles to replace pesticides and fertilizers. Microb Biotechnol. 2020;13(5):1366–1376. doi:10.1111/1751-7915.13645.
  • Nunes MCN, Brecht JK, Morais AM, Sargent SA. Possible influences of water loss and polyphenol oxidase activity on anthocyanin content and discoloration in fresh ripe strawberry (cv. Oso grande) during storage at 1 °C. J Food Sci. 2005;70(1):S79–S84. doi:10.1111/j.1365-2621.2005.tb09069.x.
  • Camenzind T, Hättenschwiler S, Treseder KK, Lehmann A, Rillig MC. Nutrient limitation of soil microbial processes in tropical forests. Ecol Monogr. 2018;88(1):4–21. doi:10.1002/ecm.1279.
  • Di Francesco A, Ugolini L, Lazzeri L, Mari M. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control. 2015;81:8–14. doi:10.1016/j.biocontrol.2014.10.004.
  • Huang R, Che H, Zhang J, Yang L, Jiang D, Li G. Evaluation of Sporidiobolus pararoseus strain YCXT3 as biocontrol agent of Aureobasidium on post-harvest strawberry fruits. Biol Control. 2012;62(1):53–63. doi:10.1016/j.biocontrol.2012.02.010.
  • Vinale F, Sivasithamparam K. Beneficial effects of Trichoderma secondary metabolites on crops. Phytother Res. 2020;34(11):2835–2842. doi:10.1002/ptr.6728.
  • Rodríguez A, Alquézar B, Peña L. Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 2013;197(1):36–48. doi:10.1111/j.1469-8137.2012.04382.x.
  • de Boer W, Li X, Meisner A, Garbeva P. Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol. 2019;95(8):fiz105. doi:10.1093/femsec/fiz105.
  • Poveda J. Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl Soil Ecol. 2021;168:104118. doi:10.1016/j.apsoil.2021.104118.
  • Kanchiswamy CN, Malnoy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci. 2015;6:151. doi:10.3389/fpls.2015.00151.
  • Kanchiswamy CN, Malnoy M, Maffei ME. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 2015;20(4):206–211. doi:10.1016/j.tplants.2015.01.004.
  • Sirijan M, Drapal M, Chaiprasart P, Fraser PD. Characterisation of thai strawberry (Fragaria× ananassa duch.) cultivars with RAPD markers and metabolite profiling techniques. Phytochemistry. 2020;180:112522. doi:10.1016/j.phytochem.2020.112522.
  • Darrow GM. The strawberry. History, breeding and physiology. The Strawberry History, Breeding And Physiology. 1966;230:447.
  • Xiao J-R, Chung P-C, Wu H-Y, Phan Q-H, Yeh J-L, Hou M-K. Detection of strawberry diseases using a convolutional neural network. Plants. 2020;10(1):31. doi:10.3390/plants10010031.
  • Khruengsai S, Pripdeevech P, Tanapichatsakul C, Srisuwannapa C, D’Souza PE, Panuwet P. Antifungal properties of volatile organic compounds produced by daldinia eschscholtzii MFLUCC 19-0493 isolated from barleria prionitis leaves against Colletotrichum acutatum and its post-harvest infections on strawberry fruits. PeerJ. 2021;9:e11242. doi:10.7717/peerj.11242.
  • Kummanid J, Akimitsu K, Nalumpang S. Mutations of the β‐tubulin gene fragments from carbendazim‐resistant isolates of pestalotiopsis sp. causing strawberry leaf blight in Chiang Mai, Thailand. J Phytopathol. 2017;165(7–8):515–521. doi:10.1111/jph.12588.
  • Kongtragoul P, Imamoto K, Ishii H. Resistance to quinone-outside inhibitor (QoI) fungicides in colletotrichum species isolated from anthracnose disease occurring in Thailand. Current Applied Science And Technology. 2020;20:79–89.
  • Mekwilai T, Nalumpang S. Evaluation of carbendazim resistance levels of botrytis cinerea causing gray mold of grape in Chiang Mai province, northern Thailand. Int J Agric Tech. 2017;13:169–182.
  • Wang Y, Li Y, Yang J, Ruan J, Sun C. Microbial volatile organic compounds and their application in microorganism identification in foodstuff. TrAc Trend Anal Chem. 2016;78:1–16. doi:10.1016/j.trac.2015.08.010.
  • Sahlberg B, Gunnbjörnsdottir M, Soon A, Jogi R, Gislason T, Wieslander G, Janson C, Norback D. Airborne molds and bacteria, microbial volatile organic compounds (MVOC). plasticizers and formaldehyde in dwellings in three North European cities in relation to sick building syndrome (SBS). Science Of The Total Environment. 2013;444:433–440. doi:10.1016/j.scitotenv.2012.10.114.
  • Korpi A, Järnberg J, Pasanen A-L. Microbial volatile organic compounds. Crit Rev Toxicol. 2009;39(2):139–193. doi:10.1080/10408440802291497.
  • Li ZT, Janisiewicz WJ, Liu Z, Callahan AM, Evans BE, Jurick WM, Dardick C. Exposure in vitro to an environmentally isolated strain TC09 of Cladosporium sphaerospermum triggers plant growth promotion, early flowering, and fruit yield increase. Front Plant Sci. 2019;9:1959. doi:10.3389/fpls.2018.01959.
  • Owen SM, Clark S, Pompe M, Semple KT. Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of populus tremula. FEMS Microbiol Lett. 2007;268(1):34–39. doi:10.1111/j.1574-6968.2006.00602.x.
  • Ramirez KS, Lauber CL, Fierer N. Microbial consumption and production of volatile organic compounds at the soil-litter interface. Biogeochemistry. 2010;99(1–3):97–107. doi:10.1007/s10533-009-9393-x.
  • Meredith LK, Tfaily MM. Capturing the microbial volatilome: an oft overlooked’ome’. Trends Microbiol. 2022;30(7):622–631. doi:10.1016/j.tim.2021.12.004.
  • Schulz-Bohm K, Martín-Sánchez L, Garbeva P. Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Front Microbiol. 2017;8:2484. doi:10.3389/fmicb.2017.02484.
  • Raza W, Wei Z, Jousset A, Shen Q, Friman V-P, Bean HD. Extended plant metarhizobiome: understanding volatile organic compound signaling in plant-microbe metapopulation networks. mSystems. 2021;6(4):e00849–21. doi:10.1128/mSystems.00849-21.
  • Singh VK, Shukla AK, Singh AK. An insight on potential role of microbial volatiles as an aromatic tool in management of crop productivity. In: Microbiome stimulants for crops. Elsevier; 2021. pp. 283–291.
  • Fincheira P, Quiroz A, Tortella G, Diez MC, Rubilar O. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol Res. 2021;247:126726. doi:10.1016/j.micres.2021.126726.
  • Yarzábal LA, Chica EJ. Role of rhizobacterial secondary metabolites in crop protection against agricultural pests and diseases. In: New and future developments in microbial biotechnology and bioengineering. Elsevier; 2019. pp. 31–53.
  • Basu S, Priyadarshini P, Prasad R, Kumar GEffects of microbial signaling in plant growth and developmentBeneficial microorganisms in agriculturepp. 329–348Springer Nature Singapore202210.1007/978-981-19-0733-3_14
  • Velivelli SLS, Kromann P, Lojan P, Rojas M, Franco J, Suarez JP, Prestwich BD. Identification of mVocs from andean rhizobacteria and field evaluation of bacterial and mycorrhizal inoculants on growth of potato in its center of origin. Microb Ecol. 2015;69(3):652–667. doi:10.1007/s00248-014-0514-2.
  • Fadiji AE, Santoyo G, Yadav AN, Babalola OO. Efforts towards overcoming drought stress in crops: revisiting the mechanisms employed by plant growth-promoting bacteria. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.962427.
  • LdR C, Chiappero J, Palermo TB, Giordano W, Banchio E. Volatile organic compounds from rhizobacteria increase the biosynthesis of secondary metabolites and improve the antioxidant status in mentha piperita L. grown under salt stress. Agronomy. 2020;10(8):1094. doi:10.3390/agronomy10081094.
  • Thankappan S, Narayanasamy S, Sridharan AP, Binodh AK, Nirmala Kumari A, Parasuraman P, et al. Rhizospheric volatilome in modulating induced systemic resistance against biotic stress: a new paradigm for future food security. Physiol Mol Plant Pathol. 2022;120:101852. doi:10.1016/j.pmpp.2022.101852.
  • Tahir HA, Gu Q, Wu H, Raza W, Hanif A, Wu L, et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol. 2017;8:171. doi:10.3389/fmicb.2017.00171.
  • Wu Y, Zhou J, Li C, Ma Y. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen. 2019;8(8):e00813. doi:10.1002/mbo3.813.
  • Rath M, Mitchell T, Gold S. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol Res. 2018;208:76–84. doi:10.1016/j.micres.2017.12.014.
  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Del Carmen Orozco-Mosqueda M, Macías-Rodríguez LI, Reyes-de la Cruz H, et al. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control. 2015;81:83–92. doi:10.1016/j.biocontrol.2014.11.011.
  • Jishma P, Hussain N, Chellappan R, Rajendran R, Mathew J, Radhakrishnan E. Strain‐specific variation in plant growth promoting volatile organic compounds production by five different pseudomonas spp. as confirmed by response of vigna radiata seedlings. J Appl Microbiol. 2017;123(1):204–216. doi:10.1111/jam.13474.
  • Kai M, Piechulla B. Plant growth promotion due to rhizobacterial volatiles - an effect of CO 2 ? FEBS Lett. 2009;583(21):3473–3477. doi:10.1016/j.febslet.2009.09.053.
  • Piechulla B, Lemfack MC, Kai M. Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell & Environ. 2017;40(10):2042–2067. doi:10.1111/pce.13011.
  • Bitas V, McCartney N, Li N, Demers J, Kim J-E, Kim H-S, et al. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front Microbiol. 2015;6:1248. doi:10.3389/fmicb.2015.01248.
  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wünsche H, Baldwin IT. Dimethyl disulfide produced by the naturally associated bacterium bacillus sp b55 promotes nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell. 2013;25(7):2731–2747. doi:10.1105/tpc.113.114744.
  • Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E. Root symbionts: powerful drivers of plant above‐and belowground indirect defenses. Insect Sci. 2017;24(6):947–960. doi:10.1111/1744-7917.12464.
  • Savary S, Ficke A, Aubertot J-N, Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Springer; 2012. pp. 519–537.
  • Subramanian RK, Kumaravel SR, Srinivasan R, Prabakaran N, Kandasamy KP, Balaji G, et al. Inhibitory action of mVocs from shewanella algae Sg8 against phytopathogenic fungi and transcriptional elicitation of PR genes in tomato. 2022.
  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK. Microbial volatile emissions as insect semiochemicals. J Chem Ecol. 2013;39(7):840–859. doi:10.1007/s10886-013-0306-z.
  • Shikano I, Rosa C, Tan C-W, Felton GW. Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu Rev Phytopathol. 2017;55(1):313–331. doi:10.1146/annurev-phyto-080516-035319.
  • Asari S, Matzén S, Petersen MA, Bejai S, Meijer J, Sessitsch A. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol Ecol. 2016;92(6):fiw070. doi:10.1093/femsec/fiw070.
  • Chen J, Wei X, Lu X, Ming R, Huang D, Yao Y, Li L, Huang R. Burkholderia cenocepacia ETR-B22 volatile organic compounds suppress postharvest grey mould infection and maintain aroma quality of tomato fruit. LWT. 2022;165:113715. doi:10.1016/j.lwt.2022.113715.
  • Liu A, Zhang P, Bai B, Bai F, Jin T, Ren J. Volatile organic compounds of endophytic Burkholderia pyrrocinia strain JK-SH007 promote disease resistance in poplar. Plant Dis. 2020;104(6):1610–1620. doi:10.1094/PDIS-11-19-2366-RE.
  • Yamada Y, Cane DE, Ikeda H. Diversity and analysis of bacterial terpene synthases. Methods Enzymol. 2012;515:123–162.
  • Wenke K, Kai M, Piechulla B. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta. 2010;231(3):499–506. doi:10.1007/s00425-009-1076-2.
  • Vespermann A, Kai M, Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microb. 2007;73(17):5639–5641. doi:10.1128/AEM.01078-07.
  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B. mVOC: a database of microbial volatiles. Nucleic Acids Res. 2014;42(D1):D744–D8. doi:10.1093/nar/gkt1250.
  • Lira MA Jr, Nascimento LR, Fracetto GG. Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol. 2015;6:945. doi:10.3389/fmicb.2015.00945.
  • Schmidt R, Cordovez V, De Boer W, Raaijmakers J, Garbeva P. Volatile affairs in microbial interactions. Isme J. 2015;9(11):2329–2335. doi:10.1038/ismej.2015.42.
  • Cape J. Effects of airborne volatile organic compounds on plants. Environ Pollut. 2003;122(1):145–157. doi:10.1016/S0269-7491(02)00273-7.
  • Chenu C, Stotzky G. Interactions between microorganisms and soil particles: an overview. Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. 2001;211: 3–40.
  • NMv D, Weinhold A, Garbeva PCalling in the dark: the role of volatiles for communication in the rhizosphereDeciphering chemical language of plant communicationpp. 175–210Springer201610.1007/978-3-319-33498-1_8
  • Kaiser R. Flowers and fungi use scents to mimic each other. Science. 2006;311(5762):806–807. doi:10.1126/science.1119499.
  • Wihlborg R, Pippitt D, Marsili R. Headspace sorptive extraction and GC-TOFMS for the identification of volatile fungal metabolites. J Microbiol Methods. 2008;75(2):244–250. doi:10.1016/j.mimet.2008.06.011.
  • Bitas V, Kim H-S, Bennett JW, Kang S. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe In. 2013;26(8):835–843. doi:10.1094/MPMI-10-12-0249-CR.
  • Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 2013;37(5):634–663. doi:10.1111/1574-6976.12028.
  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, et al. Broad‐range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol. 2011;110(1):341–352. doi:10.1111/j.1365-2672.2010.04891.x.
  • Raza W, Ling N, Yang L, Huang Q, Shen Q. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep. 2016;6(1):1–13. doi:10.1038/srep24856.
  • Zou C-S, Mo M-H, Gu Y-Q, Zhou J-P, Zhang K-Q. Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem. 2007;39(9):2371–2379. doi:10.1016/j.soilbio.2007.04.009.
  • Wani MA, Sanjana K, Kumar DM, Lal DK. GC - MS analysis reveals production of 2 - Phenylethanol from Aspergillus niger endophytic in rose. J Basic Microbiol. 2010;50(1):110–114. doi:10.1002/jobm.200900295.
  • Garbeva P, Hordijk C, Gerards S, de Boer W. Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol. 2014;5:289. doi:10.3389/fmicb.2014.00289.
  • Garbeva P, Hordijk C, Gerards S, De Boer W. Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol. 2014;87(3):639–649. doi:10.1111/1574-6941.12252.
  • Garbeva P, Hol WG, Termorshuizen AJ, Kowalchuk GA, De Boer W. Fungistasis and general soil biostasis–a new synthesis. Soil Biol Biochem. 2011;43(3):469–477. doi:10.1016/j.soilbio.2010.11.020.
  • Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol. 2015;6:1081. doi:10.3389/fmicb.2015.01081.
  • Miyamoto K, Murakami T, Kakumyan P, Keller NP, Matsui K. Formation of 1-octen-3-ol from aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJ. 2014;2:e395. doi:10.7717/peerj.395.
  • Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, van Wezel GP, Raaijmakers JM. Diversity and functions of volatile organic compounds produced by streptomyces from a disease-suppressive soil. Front Microbiol. 2015;6:6. doi:10.3389/fmicb.2015.01081.
  • De Vrieze M, Pandey P, Bucheli TD, Varadarajan AR, Ahrens CH, Weisskopf L, et al. Volatile organic compounds from native potato-associated pseudomonas as potential anti-oomycete agents. Front Microbiol. 2015;6:1295. doi:10.3389/fmicb.2015.01295.
  • Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, Van Doorn MM, Legué V, Palme K, Schnitzler J-P, Polle A, et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun. 2015;6(1):1–9. doi:10.1038/ncomms7279.
  • Sánchez‐López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Li J, Humplík JF, et al. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant, Cell & Environ. 2016;39(12):2592–2608. doi:10.1111/pce.12759.
  • Cordovez V, Mommer L, Moisan K, Lucas-Barbosa D, Pierik R, Mumm R, Carrion VJ, Raaijmakers JM. Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen rhizoctonia solani. Front Plant Sci. 2017;8:1262. doi:10.3389/fpls.2017.01262.
  • Rajer FU, Wu H, Xie Y, Xie S, Raza W, Tahir HAS, Gao X. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology. 2017;163(4):523–530. doi:10.1099/mic.0.000451.
  • Banerjee D, Strobel GA, Booth B, Sears J, Spakowicz D, Busse S. An endophytic my rothecium inundatum producing volatile organic compounds. Mycosphere. 2010;1:241–247.
  • Geisen S. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biol Biochem. 2016;102:22–25. doi:10.1016/j.soilbio.2016.06.013.
  • Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, Urich T. Metatranscriptomic census of active protists in soils. Isme J. 2015;9(10):2178–2190. doi:10.1038/ismej.2015.30.
  • Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–18. doi:10.1016/j.soilbio.2015.11.010.
  • Griffiths BS, Bonkowski M, Dobson G, Caul S. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia. 1999;43:297–304.
  • Bonkowski M, Brandt F. Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem. 2002;34(11):1709–1715. doi:10.1016/S0038-0717(02)00157-8.
  • Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. Isme J. 2009;3(6):675–684. doi:10.1038/ismej.2009.11.
  • Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12(12):3105–3113. doi:10.1111/j.1462-2920.2010.02283.x.
  • Chen X, Köllner TG, Jia Q, Norris A, Santhanam B, Rabe P, Dickschat JS, Shaulsky G, Gershenzon J, Chen F. Terpene synthase genes in eukaryotes beyond plants and fungi: occurrence in social amoebae. Proceedings Of The National Academy Of Sciences 2016;113:12132–12137.
  • Jousset A. Ecological and evolutive implications of bacterial defences against predators. Environ Microbiol. 2012;14(8):1830–1843. doi:10.1111/j.1462-2920.2011.02627.x.
  • Schulz-Bohm K, Geisen S, Wubs E, Song C, de Boer W, Garbeva P. The prey’s scent–volatile organic compound mediated interactions between soil bacteria and their protist predators. Isme J. 2017;11(3):817–820. doi:10.1038/ismej.2016.144.
  • Koike ST, Gordon TR, Daugovish O, Ajwa H, Bolda M, Subbarao K. Recent developments on strawberry plant collapse problems in California caused by fusarium and macrophomina. International Journal Of Fruit Science. 2013;13(1–2):76–83. doi:10.1080/15538362.2012.697000.
  • Yang X, Yan R, Chen Q, Fu M. Analysis of flavor and taste attributes differences treated by chemical preservatives: a case study in strawberry fruits treated by 1-methylcyclopropene and chlorine dioxide. J Food Sci Technol. 2020;57(12):4371–4382. doi:10.1007/s13197-020-04474-7.
  • Sangiorgio D, Cellini A, Donati I, Ferrari E, Tanunchai B, Fareed Mohamed Wahdan S, Sadubsarn D, Farneti B, Checcucci A, Buscot F. Taxonomical and functional composition of strawberry microbiome is genotype-dependent. 2022;42:189–204. doi:10.1016/j.jare.2022.02.009.
  • Gong D, Bi Y, Zong Y, Li Y, Sionov E, Prusky D. Characterization and sources of volatile organic compounds produced by postharvest pathogenic fungi colonized fruit. Postharvest Biol Technol. 2022;188:111903. doi:10.1016/j.postharvbio.2022.111903.
  • Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils–a review. Food Chem Toxicol. 2008;46(2):446–475. doi:10.1016/j.fct.2007.09.106.
  • Bohlmann J, Keeling CI. Terpenoid biomaterials. The Plant Journal. 2008;54(4):656–669. doi:10.1111/j.1365-313X.2008.03449.x.
  • Sánchez-Sevilla JF, Cruz-Rus E, Valpuesta V, Botella MA, Amaya I. Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses. Bmc Genom. 2014;15(1):1–15. doi:10.1186/1471-2164-15-218.
  • Zabetakis I. Enhancement of flavour biosynthesis from strawberry (Fragaria x ananassa) callus cultures by methylobacterium species. Plant Cell Tissue Organ Cult. 1997;50(3):179–183. doi:10.1023/A:1005968913237.
  • Verginer M, Leitner E, Berg G. Production of volatile metabolites by grape-associated microorganisms. J Agr Food Chem. 2010;58(14):8344–8350. doi:10.1021/jf100393w.
  • Wang L, Dou G, Guo H, Zhang Q, Qin X, Yu W, Jiang C, Xiao H. Volatile organic compounds of Hanseniaspora uvarum increase strawberry fruit flavor and defense during cold storage. Food Sci Nutr. 2019;7(8):2625–2635. doi:10.1002/fsn3.1116.
  • Trinetta V, McDaniel A, Konstantinos GB, Yucel U, Nwadike L, Pliakoni EAntifungal packaging film to maintain quality and control postharvest diseases in strawberriesAntibiotics20209618910.3390/antibiotics9090618
  • Nunes CA. Biological control of postharvest diseases of fruit. Eur J Plant Pathol. 2012;133(1):181–196. doi:10.1007/s10658-011-9919-7.
  • Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiol. 2019;82:70–74. doi:10.1016/j.fm.2019.01.008.
  • Parafati L, Vitale A, Restuccia C, Cirvilleri G. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Food Microbiol. 2017;63:191–198. doi:10.1016/j.fm.2016.11.021.
  • Oro L, Feliziani E, Ciani M, Romanazzi G, Comitini F. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Int J Food Microbiol. 2018;265:18–22. doi:10.1016/j.ijfoodmicro.2017.10.027.
  • Qin X, Xiao H, Cheng X, Zhou H, Si L. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production. Food Microbiol. 2017;63:205–212. doi:10.1016/j.fm.2016.11.005.
  • Chen P-H, Chen R-Y, Chou J-Y. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology. 2018;46(1):33–46. doi:10.1080/12298093.2018.1454013.
  • Bagheri S, Amini J, Ashengroph M, Saba MK. Antifungal effects of volatile compounds produced by Tetrapisispora sp. strain 111ANL1as a new biocontrol agent on the strawberry grey mold disease. Cell Mol Biol. 2022;68(4):12–23. doi:10.14715/cmb/2022.68.4.2.
  • Li X, Wang X, Shi X, Wang B, Li M, Wang Q, Zhang S. Antifungal effect of volatile organic compounds from Bacillus velezensis CT32 against verticillium dahliae and Fusarium oxysporum. Processes. 2020;8(12):1674. doi:10.3390/pr8121674.
  • Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, SCHNITZLER JP. Biogenic volatile emissions from the soil. Plant, Cell & Environ. 2014;37(8):1866–1891. doi:10.1111/pce.12340.