638
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Structure-activity relationship of volatile compounds that induce defense-related genes in maize seedlings

, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2234115 | Received 05 May 2023, Accepted 30 Jun 2023, Published online: 16 Jul 2023

References

  • Zhou S, Jander G, Ort D. Molecular ecology of plant volatiles in interactions with insect herbivores. J Exp Bot. 2022;73(2):449–9. doi:10.1093/jxb/erab413.
  • Brosset A, Blande JD, Rosenkranz M. Volatile-mediated plant–plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. J Exp Bot. 2022;73(2):511–528. doi:10.1093/jxb/erab487.
  • Karban R, Yang LH, Edwards KF. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett. 2014;17(1):44–52. doi:10.1111/ele.12205.
  • Matsui K, Engelberth J. Green leaf volatiles—the forefront of plant responses against biotic attack. Plant Cell Physiol. 2022;63(10):1378–1390. doi:10.1093/pcp/pcac117.
  • Tanaka T, Ikeda A, Shiojiri K, Ozawa R, Shiki K, Nagai-Kunihiro N, Fujita K, Sugimoto K, Yamato KT, Dohra H, et al. Identification of a hexenal reductase that modulates the composition of green leaf volatiles. Plant Physiol. 2018;178(2):552–564. doi:10.1104/pp.18.00632.
  • D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J. 2007;49(2):194–207. doi:10.1111/j.1365-313X.2006.02946.x.
  • Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishika T, Matsui K, Takabayashi J. Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA. 2006;103(45):16672–16676. doi:10.1073/pnas.0607780103.
  • Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S, et al. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci USA. 2014;111(19):7144–7149. doi:10.1073/pnas.1320660111.
  • Sugimoto K, Ono E, Inaba T, Tsukahara T, Matsui K, Horikawa M, Toyonaga H, Fujikawa K, Osawa T, Homma S, et al. Identification of a tomato UDP-arabinosyltransferase for airborne volatile reception. Nat Commun. 2023;14:677. doi:10.1038/s41467-023-36381-8.
  • Hu L, Zhang K, Wu Z, Xu J, Erb M. Plant volatiles as regulators of plant defense and herbivore immunity: molecular mechanisms and unanswered questions. Curr Opin Plant Biol. 2021;44:82–88. doi:10.1016/j.cois.2021.03.010.
  • Zebelo SA, Matsui K, Ozawa R, Maffei ME. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci. 2012;196:93–100. doi:10.1016/j.plantsci.2012.08.006.
  • Engelberth J, Contreras CF, Dalvi C, Li T, Engelberth M, Heil M. Early transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles. PLoS One. 2013;8(10):e77465. doi:10.1371/journal.pone.0077465.
  • Yamauchi Y, Kunishima M, Mizutani M, Sugimoto Y. Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression. Sci Rep. 2015;5:8030. doi:10.1038/srep08030.
  • Alméras E, Stolz S, Vollenweider S, Reymond P, Méne-Saffrané L, Farmer EE. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J. 2003;34(2):205–216. doi:10.1046/j.1365-313X.2003.01718.x.
  • Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J, Bonaventure G. Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirement. PLoS One. 2012;7(4):e36433. doi:10.1371/journal.pone.0036433.
  • Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K. Green leaf volatile production by plants: a meta-analysis. New Phytol. 2018;220(3):666–683. doi:10.1111/nph.14671.
  • Hu L, Ye M, Erb M. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Plant, Cell & Environ. 2019;42(3):959–971. doi:10.1111/pce.13443.
  • Widhalm JR, Shih ML, Morgan JA, Dudareva N. Two-way communication: volatile emission and uptake occur through the same barriers. Mol Plant. 2023;16(1):1–3. doi:10.1016/j.molp.2022.11.006.
  • Matsui M, Furuhata A, Tade H, Hayashi K. 1979. 3-Hexynyl and cis-3-hexenyl ethers, their preparation and use. JPS5412309. (in Japanese).
  • Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TCJ. Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun. 2015;6(1):6273. doi:10.1038/ncomms7273.
  • Engelberth J, Alborn HA, Schmelz EA, Tumlinson JH. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA. 2004;101(6):1781–1785. doi:10.1073/pnas.0308037100.
  • Nagashima A, Higaki T, Koeduka T, Ishigami K, Hosokawa S, Watanabe H, Matsui K, Hasezawa S, Touhara K. Transcriptional regulators involved in responses to volatile organic compounds in plants. J Biol Chem. 2019;294(7):2256–2266. doi:10.1074/jbc.RA118.005843.
  • von Merey G, Veyrat N, Mahuku G, Valdez RL, Turlings TCJ, D’Alessandro M. Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry. 2011;72(14–15):1838–1847. doi:10.1016/j.phytochem.2011.04.022.
  • Farag MA, Foker M, Abd H, Zhang H, Allen RD, Paré PW. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta. 2005;220(6):900–909. doi:10.1007/s00425-004-1404-5.
  • Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 2007;49(1):16–26. doi:10.1111/j.1365-313X.2006.02935.x.
  • Cofer TM, Erb M, Tumlinson JH. The Arabidopsis thaliana carboxyesterase AtCXE12 converts volatile (Z)-3-hexenyl acetate to (Z)-3-hexenol. bioRxiv. 2023. doi:10.1101/2023.03.14.532512.
  • Goulet C, Mageroy MH, Lam NB, Floystad A, Tieman DM, Klee HJ. Role of an esterase in flavor volatile variation within the tomato clade. Proc Natl Acad Sci USA. 2012;109(46):19009–19014. doi:10.1073/pnas.1216515109.
  • Gershater M, Sharples K, Edwards R. Carboxyesterase activities toward pesticide esters in crops and weeds. Phytochemistry. 2006;67(23):2561–2567. doi:10.1016/j.phytochem.2006.09.019.
  • Heil M, Lion U, Boland W. Defense-inducing volatiles: In search of the active motif. J Chem Ecol. 2008;34(5):601–604. doi:10.1007/s10886-008-9464-9.
  • Engelberth J. Selective inhibition of jasmonic acid accumulation by a small α,β-unsaturated carbonyl and phenidone reveals different modes of octadecanoid signalling activation in response to insect elicitors and green leaf volatiles in Zea mays. BMC Res Notes. 2011;4:377. doi:10.1186/1756-0500-4-377.
  • Grahovac J, Pajcin I, Vlajkov V. Bacillus VOCs in the context of biological control. Antibiotics. 2023;12:581. doi:10.3390/antibiotics12030581.
  • Liao P, Maoz I, Shih ML, Lee JH, Huang XQ, Morgan JA, Dudareva N. Emission of floral volatiles is facilitated by cell wall non-specific lipid transfer proteins. Nat Commun. 2023;14(1):330. doi:10.1038/s41467-023-36027-9.
  • Sugimoto K, Matsui K, Takabayashi J. Conversion of volatile alcohols into their glucosides in Arabidopsis. Commun Integr Biol. 2015;8(1):e992731. doi:10.4161/19420889.2014.992731.
  • Li Z, Hao P, Li L, Tna CYJ, Cheng X, Chen GYJ, Sze SK, Shen HM, Yao SQ. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew Chem Int Ed Engl. 2013;52(33):8551–8556. doi:10.1002/anie.201300683.