734
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The FLOWERING LOCUS T LIKE 2-1 gene of Chenopodium triggers precocious flowering in Arabidopsis seedlings

, , , , , , & ORCID Icon show all
Article: 2239420 | Received 15 Jun 2023, Accepted 14 Jul 2023, Published online: 28 Jul 2023

References

  • Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012;13(9):627–10. doi:10.1038/nrg3291.
  • Hyun Y, Richter R, Vincent C, Martínez-Gallegos R, Porri A, Coupland G. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev Cell. 2016;37(3):254–266. doi:10.1016/j.devcel.2016.04.001.
  • Riboni M, Galbiati M, Tonelli C, Conti L. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPRESSOR of OVEREXPRESSION of CONSTANTS1. Plant Phys. 2013;162(3):1706–1719. doi:10.1104/pp.113.217729.
  • Chailakhyan MK. About the mechanism of the photoperiodic response. Dokl Akad Nauk SSSR. 1936;1:85–89.
  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007;316(5827):1030–1033. doi:10.1126/science.1141752.
  • Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis. Curr Biol. 2007;17(12):1050–1054. doi:10.1016/j.cub.2007.05.008.
  • Hayama R, Agashe B, Luley E, King R, Coupland G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell. 2007;19(10):2988–3000. doi:10.1105/tpc.107.052480.
  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007;316(5827):1033–1036. doi:10.1126/science.1141753.
  • Mathieu J, Warthmann N, Küttner F, Schmid M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol. 2007;17(12):1055–1060. doi:10.1016/j.cub.2007.05.009.
  • Pin P, Nilsson O The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell & Environ. 2012;35(10):1742–1755. doi:10.1111/j.1365-3040.2012.02558.x.
  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O. An antagonistic pair of FT Homologs mediates the control of flowering time in sugar beet. Science. 2010;330(6009):1397–1400. doi:10.1126/science.1197004.
  • Drabešová J, Černá L, Mašterová H, Koloušková P, Potocký M, Štorchová H. The Evolution of the FT/TFL1 Genes in Amaranthaceae and their expression patterns in the course of vegetative growth and flowering in Chenopodium rubrum. G3-Genes Genomes Genet. 2016;6(10):3065–3076. doi:10.1534/g3.116.028639.
  • Cháb D, Kolář J, Olson MS, Štorchová H. Two FLOWERING LOCUS T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta. 2008;228(6):929–940. doi:10.1007/s00425-008-0792-3.
  • Drabešová J, Cháb D, Kolář J, Haškovcová K, Štorchová H. A dark–light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum. J Exp Bot. 2014;65(8):2137–2146. doi:10.1093/jxb/eru073.
  • Štorchová H. Flowering in Chenopodium and related amaranths. In: Schmöckel S, editor. The Quinoa Genome. Cham, CH:Springer International Publishing; 2021. pp. 169–177. doi:10.1007/978-3-030-65237-1_10.
  • Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, et al. The genome of Chenopodium quinoa. Nature. 2017;542(7641):307–312. doi:10.1038/nature21370.
  • Patiranage DSR, Asare E, Maldonado-Taipe N, Rey E, Emrani N, Tester M, Jung C. Haplotype variations of major flowering time genes in quinoa unveil their role in the adaptation to different environmental conditions. Plant, Cell & Environ. 2021;44(8):2565–2579. doi:10.1111/pce.14071.
  • Štorchová H, Hubáčková H, Abeyawardana OAJ, Walterová J, Vondráková Z, Eliášová K, Mandák B. Chenopodium ficifolium flowers under long days without upregulation of FLOWERING LOCUS T (FT) homologs. Planta. 2019;250(6):2111–2125. doi:10.1007/s00425-019-03285-1.
  • Štorchová H. The evolution of the FLOWERING LOCUS T-Like (FTL) genes in the goosefoot subfamily Chenopodioideae. In: Pontarotti P, editor. Evolutionary biology - a transdisciplinary approach. Cham:Springer International Publishing; 2020.pp. 325–335. doi:10.1007/978-3-030-57246-4_13.
  • Štorchová H, Drabešová J, Cháb D, Kolář J, Jellen EN. The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genet Resour Crop Evol. 2015;62(6):913–925. doi:10.1007/s10722-014-0200-8.
  • Walsh BM, Adhikary D, Maughan PJ, Emshwiller E, Jellen EN. Chenopodium polyploidy inferences from Salt Overly Sensitive 1 (SOS1) data. Am J Bot. 2015;102(4):533–543. doi:10.3732/ajb.1400344.
  • Sarrión-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-Del-Carmen A, Granell A, Orzaez D, Peccoud J. GoldenBraid: An iterative cloning system for standardized assembly of reusable genetic modules. PLoS One. 2011;6(7):e21622. doi:10.1371/journal.pone.0021622.
  • Semenyuk EG, Schmidt MA, Beachy RN, Moravec T, Woodford-Thomas T. Adaptation of an ecdysone-based genetic switch for transgene expression in soybean seeds. Transgenic Res. 2010;19(6):987–999. doi:10.1007/s11248-010-9377-6.
  • Zhang KW, Wang JM, Yang GD, Guo XQ, Wen FJ, Cui DC, Zheng CC. Isolation of a strong matrix attachment region (MAR) and identification of its function in vitro and in vivo. Chinese Sci Bull. 2002;47(23):1999–2005. doi:10.1360/02tb9434.
  • Allen GC, Hall G Jr, Michalowski S, Newman W, Spiker S, Weissinger AK, Thompson WF. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell. 1996;8:899–913. doi:10.1105/tpc.8.5.899.
  • Dušek J, Plchová H, Čerovská N, Poborilova Z, Navratil O, Kratochvilova K, Gunter C, Jacobs R, Hitzeroth II, Rybicki EP, et al. Extended set of goldenbraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Front Plant Sci. 2020;11:522059. doi:10.3389/fpls.2020.522059.
  • Hood EE, Gelvin SB, Melchers LS, Hoekema A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 1993;2(4):208–218. doi:10.1007/BF01977351.
  • An G. Binary Ti-Vectors for plant transformation and promoter analysis. Methods Enzymol. 1987;153:292–305.
  • Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–743. doi:10.1046/j.1365-313x.1998.00343.x.
  • Libus J, Štorchová H. Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. Biotechniques. 2006;41(2):156–164. doi:10.2144/000112232.
  • Alvarez M, Bleich A, Donohue K. Genotypic variation in the persistence of transgenerational response to seasonal cues. Evolution. 2020;74(10):2423–2424. doi:10.1111/evo.14367.
  • Sun H, Jia Z, Cao D, Jiang BJ, Wu CX, Hou WS, Liu YK, Fei ZH, Zhao DZ, Han TF, et al. GmFt2a, a Soybean Homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One. 2011;6(12):e29238. doi:10.1371/journal.pone.0029238.
  • Subedi M, Neff E, Davis TM. Developing Chenopodium ficifolium as a potential B genome diploid model system for genetic characterization and improvement of allotetraploid quinoa (Chenopodium quinoa). BMC Plant Biol. 2021;21(1):490. doi:10.1186/s12870-021-03270-5.