1,237
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Comparative analysis of sorghum (C4) and rice (C3) plant headspace volatiles induced by artificial herbivory

, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 2243064 | Received 01 Jun 2023, Accepted 25 Jul 2023, Published online: 10 Aug 2023

References

  • Bruce TJA. Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J Exp Bot. 2015;66(2):455–10. doi:10.1093/jxb/eru391.
  • Wari D, Aboshi T, Shinya T, Galis I. Integrated view of plant metabolic defense with particular focus on chewing herbivores. J Integr Plant Biol. 2022;64:449–475. doi:10.1111/jipb.13204.
  • Bezerra RHS, Sousa-Souto L, Santana AEG, Ambrogi BG, Bezerra. Indirect plant defenses: volatile organic compounds and extrafloral nectar. Arthropod Plant Interact. 2021;15(4):467–489. doi:10.1007/s11829-021-09837-1.
  • Hare JD. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. In: Berenbaum M, Carde R Robinson G editors. Annual Review of Entomology, 2011 Vol. 56. pp. 161–180. doi:10.1146/annurev-ento-120709-144753
  • Wang L, Erb M, Kanyuka K, Hammond-Kosack K. Volatile uptake, transport, perception, and signaling shape a plant’s nose. Essays Biochem. 2022;66(5):695–702. doi:10.1042/ebc20210092.
  • Bruce TJA, Pickett JA. Perception of plant volatile blends by herbivorous insects – Finding the right mix. Phytochemistry. 2011;72(13):1605–1611. doi:10.1016/j.phytochem.2011.04.011.
  • Takabayashi J, Shiojiri K. Multifunctionality of herbivory-induced plant volatiles in chemical communication in tritrophic interactions. Curr Opin Insect Sci. 2019;32:110–117. doi:10.1016/j.cois.2019.01.003.
  • Arimura GI, Köpke S, Kunert M, Volpe V, David A, Brand P, Dabrowska P, Maffei ME, Boland W. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 2008;146(3):965–973. doi:10.1104/pp.107.111088.
  • Joo Y, Schuman MC, Goldberg JK, Kim SG, Yon F, Brutting C, Baldwin IT, Rasmann S. Herbivore-induced volatile blends with both “fast” and “slow” components provide robust indirect defence in nature. Funct Ecol. 2018;32(1):136–149. doi:10.1111/1365-2435.12947.
  • Zhou S, Jander G, Ort D. Molecular ecology of plant volatiles in interactions with insect herbivores. J Exp Bot. 2022;73(2):449–462. doi:10.1093/jxb/erab413.
  • Tamiru A, Khan ZR. Volatile semiochemical mediated plant defense in cereals: A novel strategy for crop protection. Agronomy. 2017;7(3):58. doi:10.3390/agronomy7030058.
  • Block AK, Hunter CT, Rering C, Christensen SA, Meagher RL, Block. Contrasting insect attraction and herbivore-induced plant volatile production in maize. Planta. 2018;248(1):105–116. doi:10.1007/s00425-018-2886-x.
  • Mujiono K, Tohi T, Sobhy IS, Hojo Y, Shinya T, Galis I. Herbivore-induced and constitutive volatiles are controlled by different oxylipin-dependent mechanisms in rice. Plant, Cell & Environ. 2021;44(8):2687–2699. doi:10.1111/pce.14126.
  • Nwanze KF, Nwilene FE. Interactions of host plant resistance and biological control of stem borers in sorghum. Int J Trop Insect Sci. 2011;18(3):261–266. doi:10.1017/S174275840002350X.
  • Perumal R, et al. Sorghum breeding for biotic stress tolerance. In: Roney B editors. Achieving sustainable cultivation of sorghum, Volume 1: genetics, breeding and production techniques. Sawston: Burleigh Dodds Science Publishing; 2018pp. 189–226.
  • Osinde C, Sakamoto W, Kajiya-Kanegae H, Sobhy IS, Tugume AK, Nsubuga AM, Galis I. Identification of quantitative trait loci associated with sorghum susceptibility to Asian stem borer damage. J Plant Interact. 2023;18(1). doi:10.1080/17429145.2022.2153182.
  • Andama JB, Mujiono K, Hojo Y, Shinya T, Galis I. Non-glandular silicified trichomes are essential for rice defense against chewing herbivores. Plant, Cell & Environ. 2020;43(9):2019–2032. doi:10.1111/pce.13775.
  • Zhuang XF, Köllner TG, Zhao N, Li G, Jiang Y, Zhu L, Ma J, Degenhardt J, Chen F. Dynamic evolution of herbivore-induced sesquiterpene biosynthesis in sorghum and related grass crops. Plant J. 2012;69(1):70–80. doi:10.1111/j.1365-313X.2011.04771.x.
  • Cui H, Cui H C. Challenges and approaches to crop improvement through C3-to-C4 engineering. Front Plant Sci. 2021;12:715391. doi:10.3389/fpls.2021.715391.
  • Burow GB, Klein RR, Franks CD, Klein PE, Schertz KF, Pederson GA, Xin Z, Burke JJ. Registration of the BTx623/IS3620C recombinant inbred mapping population of sorghum. J Plant Regist. 2011;5(1):141–145. doi:10.3198/jpr2010.04.0219crmp.
  • Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Wacera W. F, Omollo EA, Kobayashi M, Yano K, Nakano M, et al. RAD-seq-based high-density linkage map construction and QTL mapping of biomass-related traits in sorghum using the Japanese landrace Takakibi NOG. Plant Cell Physiol. 2020;61(7):1262–1272. doi:10.1093/pcp/pcaa056.
  • Ebiyau J, Arach T, Serunjogi LK. Commercialisation of sorghum in Uganda. Afr Crop Sci Conf Proc. 2005;7:695–696.
  • Alamgir KM, Hojo Y, Christeller JT, Fukumoto K, Isshiki R, Shinya T, Baldwin IT, Galis I. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. Plant, Cell & Environ. 2016;39(2):453–466. doi:10.1111/pce.12640.
  • Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci Rep. 2016;6(1):32537. doi:10.1038/srep32537.
  • Sobhy IS, Erb M, Sarhan AA, El-Husseini MM, Mandour NS, Turlings TCJ. Less is more: Treatment with BTH and laminarin reduces herbivore-induced volatile emissions in maize but increases parasitoid attraction. J Chem Ecol. 2012;38(4):348–360. doi:10.1007/s10886-012-0098-6.
  • Stork W, Diezel C, Halitschke R, Galis I, Baldwin IT, Holm M. An Ecological analysis of the herbivory-elicited JA burst and its metabolism: Plant memory processes and predictions of the moving target model. PLoS One. 2009;4(3):e4697. doi: 10.1371/journal.pone.0004697.
  • Sobhy IS, Miyake A, Shinya T, Galis I. Oral secretions affect HIPVs induced by generalist (Mythimna loreyi) and specialist (Parnara guttata) herbivores in rice. J Chem Ecol. 2017;43(9):929–943. doi:10.1007/s10886-017-0882-4.
  • Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–W494. doi:10.1093/nar/gky310.
  • R-Core Team (2020) R: A language and environment for statistical computing. Vienna, Austria. www.R-project.org/.
  • Guo H, Jiao YN, Tan X, Wang XY, Huang XZ, Jin HZ, Paterson AH. Gene duplication and genetic innovation in cereal genomes. Genome Res. 2019;29(2):261–269. doi:10.1101/gr.237511.118.
  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–556. doi:10.1038/nature07723.
  • Ventelon M, Deu M, Garsmeur O, Doligez A, Ghesquière A, Lorieux M, Rami JF, Glaszmann JC, Grivet L. A direct comparison between the genetic maps of sorghum and rice. Theor Appl Genet. 2001;102(2–3):379–386. doi:10.1007/s001220051657.
  • Richter A, Schaff C, Zhang Z, Lipka AE, Tian F, Köllner TG, Schnee C, Preiß S, Irmisch S, Jander G, et al. Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays. Plant Cell. 2016;28(10):2651–2665. doi: 10.1105/tpc.15.00919.
  • Mujiono K, Tohi T, Sobhy IS, Hojo Y, Ho NT, Shinya T, Galis I. Ethylene functions as a suppressor of volatile production in rice. J Exp Bot. 2020;71(20):6491–6511. doi:10.1093/jxb/eraa341.
  • Yao CC, Du LX, Liu QS, Hu XY, Ye WF, Turlings TCJ, Li YH. Stemborer-induced rice plant volatiles boost direct and indirect resistance in neighboring plants. New Phytol. 2022;237(6):2375–2387. doi:10.1111/nph.18548.
  • Sage RF, Sage TL, Kocacinar F. Photorespiration and the evolution of C4 photosynthesis. In: Merchant S editor. Annual Review of Plant Biology, 2012 Vol. 63. pp. 19–47. doi:10.1146/annurev-arplant-042811-105511
  • Wang CL, Guo LY, Li YX, Wang Z. Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Syst Biol. 2012;6(Suppl 2):S9. doi:10.1186/1752-0509-6-s2-s9.
  • Deng SY, Ashraf U, Nawaz M, Abbas G, Tang XR, Mo ZW. Water and nitrogen management at the booting stage affects yield, grain quality, nutrient uptake, and use efficiency of fragrant rice under the agro-climatic conditions of South China. Front Plant Sci. 2022;13:907231. doi:10.3389/fpls.2022.907231.
  • Niinemets U, Reichstein M. Controls on the emission of plant volatiles through stomata: A sensitivity analysis. J Geophys Res-Atmos. 2003a;108(D7):4211. doi:10.1029/2002jd002626.
  • Niinemets U, Reichstein M. Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained. J Geophys Res-Atmos. 2003b;108(D7):4208. doi:10.1029/2002jd002620.
  • Knapp AK. Gas exchange dynamics in C3 and C4 grasses - consequence of differences in stomatal conductance. Ecology. 1993;74(1):113–123. doi:10.2307/1939506.
  • Huxman TE, Monson RK. Stomatal responses of C3, C3-C4 and C4 Flaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behaviour. Plant, Cell & Environ. 2003;26(2):313–322. doi:10.1046/j.1365-3040.2003.00964.x.
  • Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 2010;185(3):780–791. doi:10.1111/j.1469-8137.2009.03102.x.
  • Taylor SH, Franks PJ, Hulme SP, Spriggs E, Christin PA, Edwards EJ, Woodward FI, Osborne CP. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytol. 2012;193(2):387–396. doi:10.1111/j.1469-8137.2011.03935.x.
  • He ZH, Webster S, He SY. Growth–defense trade-offs in plants. Curr Biol. 2022;32(12):R634–R639. doi:10.1016/j.cub.2022.04.070.
  • Huot B, Yao J, Montgomery BL, He SY. Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Mol Plant. 2014;7(8):1267–1287. doi:10.1093/mp/ssu049.
  • Ninkuu V, Zhang L, Yan JP, Fu ZC, Yang TF, Zeng HM. Biochemistry of terpenes and recent advances in plant protection. Int J Mol Sci. 2021;22(11):5710. doi:10.3390/ijms22115710.
  • Eisner T, Eisner M, Aneshansley DJ, Wu CL, Meinwald J. Chemical defense of the mint plant, Teucrium marum (Labiatae). Chemoecol. 2000;10(4):211–216. doi:10.1007/pl00001825.
  • Liu J, Zhu J, Zhang P, Han L, Reynolds OL, Zeng R, Wu J, Shao Y, You M, Gurr GM, et al. Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front Plant Sci. 2017;8:1265. doi:10.3389/fpls.2017.01265.
  • Widhalm JR, Jaini R, Morgan JA, Dudareva N. Rethinking how volatiles are released from plant cells. Trends Plant Sci. 2015;20(9):545–550. doi:10.1016/j.tplants.2015.06.009.
  • Gleadow RM, McKinley BA, Blomstedt CK, Lamb AC, Moller BL, Mullet JE. Regulation of dhurrin pathway gene expression during Sorghum bicolor development. Planta. 2021;254(6):119. doi:10.1007/s00425-021-03774-2.
  • Andiku C, Shimelis H, Shayanowako AIT, Gangashetty PI, Manyasa E. Genetic diversity analysis of East African sorghum (Sorghum bicolor [L.] Moench) germplasm collections for agronomic and nutritional quality traits. Heliyon. 2022;8(6):e09690. doi:10.1016/j.heliyon.2022.e09690.
  • Kavithamani D, Yuvaraja A, Selvi B. Principal component analysis and grouping of sorghum (Sorghum bicolor L. Moench) gene pool for genetic diversity. Electron J Plant Breed. 2019;10(4):1426–1434. doi:10.5958/0975-928X.2019.00182.0.
  • Lwande W, Bentley MD. Volatiles of Sorghum bicolor seedlings. J Nat Prod. 1987;50(5):950–952. doi:10.1021/np50053a034.
  • Padmaja PG, Woodcock CM, Bruce TJA. Electrophysiological and behavioral responses of sorghum shoot fly, Atherigona soccata, to sorghum volatiles. J Chem Ecol. 2010;36(12):1346–1353. doi:10.1007/s10886-010-9882-3.
  • Xin ZJ, Li XW, Bian L, Sun XL. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate. Bull Entomol Res. 2017;107(1):77–84. doi:10.1017/s000748531600064x.
  • Burgarella C, Berger A, Glemin S, David J, Terrier N, Deu M, Pot D. The road to sorghum domestication: Evidence from nucleotide diversity and gene expression patterns. Front Plant Sci. 2021;12:666075. doi:10.3389/fpls.2021.666075.
  • Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127(7):1309–1321. doi:10.1016/j.cell.2006.12.006.
  • Tanksley SD, McCouch SR. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science. 1997;277(5329):1063–1066. doi:10.1126/science.277.5329.1063.
  • Cooper EA, Brenton ZW, Flinn BS, Jenkins J, Shu S, Flowers D, Luo F, Wang Y, Xia P, Barry K, et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genom. 2019;20(1):420. doi:10.1186/s12864-019-5734-x.
  • Ali AN, Wright MG. Response of Trichogramma papilionis to semiochemicals induced by host oviposition on plants. Biol Control. 2021;154:104510. doi:10.1016/j.biocontrol.2020.104510.
  • Hao HQ, Li Z, Leng C, Lu C, Luo H, Liu Y, Wu X, Liu Z, Shang L, Jing H-C, et al. Sorghum breeding in the genomic era: opportunities and challenges. Theor Appl Genet. 2021;134(7):1899–1924. doi:10.1007/s00122-021-03789-z.