1,063
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Seedling growth and photosynthetic response of Pterocarpus indicus L. to shading stress

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2245625 | Received 27 May 2023, Accepted 28 Jul 2023, Published online: 13 Aug 2023

References

  • Grote R, Gessler A, Hommel R, Poschenrieder W, Priesack E. Importance of tree height and social position for drought-related stress on tree growth and mortality. Trees. 2016;30(5):1467–12. doi:10.1007/s00468-016-1446-x.
  • Hiromi T, Ichie T, Kenzo T, Ninomiya I. Interspecific variation in leaf water use associated with drought tolerance in four emergent dipterocarp species of a tropical rain forest in Borneo. J For Res. 2012;17(4):369–377. doi:10.1007/s10310-011-0303-4.
  • Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 2006;26(7):865–873. doi:10.1093/treephys/26.7.865.
  • Leakey A, Press M, Scholes J. High‐temperature inhibition of photosynthesis is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant, Cell & Environ. 2003;26(10):1681–1690. doi:10.1046/j.1365-3040.2003.01086.x.
  • Umesh MR, Angadi S, Begna S, Gowda P, Prasad PVV. Shade tolerance response of legumes in terms of biomass accumulation, leaf photosynthesis, and chlorophyll pigment under reduced sunlight. Crop Sci. 2023;63(1):278–292. doi:10.1002/csc2.20851.
  • Azevedo GFC, Marenco RA. Growth and physiological changes in saplings of Minquartia guianensis and Swietenia macrophylla during acclimation to full sunlight. Photosynthetica. 2012;50(1):86–94. doi:10.1007/s11099-012-0001-2.
  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot. 2012;63(4):1637–1661. doi:10.1093/jxb/ers013.
  • Mathur S, Jain L, Jajoo A. Photosynthetic efficiency in sun and shade plants. Photosynt. 2018;56(SPECIAL ISSUE):354–365. doi:10.1007/s11099-018-0767-y.
  • Vialet-Chabrand SR, Matthews JS, Simkin A, Raines CA, Lawson T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 2017;173(4):2163–2179. doi:10.1104/pp.16.01767.
  • Mi G, Liu L, Zhang Z, Ren H. Changes in photosynthesis and activities of enzymes involved in carbon metabolism during exposure to low light in cucumber (Cucumis sativus) seedlings. Afr J Biotechnol. 2012;11(34):8537–8545. doi:10.5897/AJB11.1632.
  • Zivcak M, Brestic M, Kalaji HM, Govindjee. Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res. 2014;119(3):339–354. doi:10.1007/s11120-014-9969-8.
  • Ding Z, Zhang Y, Xiao Y, Liu F, Wang M, Zhu X, Liu P, Sun Q, Wang W, Peng M. Transcriptome response of cassava leaves under natural shade. Sci Rep. 2016;6(1):31673. doi:10.1038/srep31673.
  • Huang D, Wu L, Chen JR, Dong L. Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica. 2011;49(4):611–618. doi:10.1007/s11099-011-0076-1.
  • Liu Y, Dawson W, Prati D, Haeuser E, Feng Y, van Kleunen M. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded? Ann Bot. 2016;118(7):1329–1336. doi:10.1093/aob/mcw180.
  • Wang Y, Lu Y, Chang Z, Wang S, Ding Y, Ding C. Transcriptomic analysis of field-grown rice (Oryza sativa L.) reveals responses to shade stress in reproductive stage. Plant Growth Regul. 2018;84(3):583–592. doi:10.1007/s10725-017-0363-3.
  • Cifuentes L, Moreno F, Mencuccini M. Trait coordination at leaf level explains the resistance to excess light stress in shade-tolerant tropical tree species. Tree Physiol. 2022;42(7):1325–1336. doi:10.1093/treephys/tpac014.
  • Bar E, Rise M, Vishkautsan M, Arad SM. Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol. 1995;146(4):527–534. doi:10.1016/S0176-1617(11)82019-5.
  • Gazal RM, Blanche CA, Carandang WM. Root growth potential and seedling morphological attributes of narra (Pterocarpus indicus willd.) transplants. Forest Ecol Manag. 2004;195(1–2):259–266. doi:10.1016/j.foreco.2004.03.023.
  • Paquit JC, Pampolina NM, Tiburan CL Jr, Manalo MMQ. Maxent modeling of the habitat distribution of the critically endangered Pterocarpus indicus willd. forma indicus inmindanao, Philippines. Int J Network Nat Sci. 2017;10:112–122.
  • Vanclay JK, Gregorio NO, Herbohn JL. Competition in a mixed-species planting with four contrasting tree species. Small-Scale For. 2022;1–19. doi:10.1007/s11842-022-09532-w.
  • Aguilos R, Marquez C, Adornado H, Aguilos M. Domesticating commercially important native tree species in the Philippines: early growth performance level. Forests. 2020;11(8):885. doi:10.3390/f11080885.
  • Kandasamy N, Kaliappan K, Palanisamy T. Upcycling sawdust into colorant: ecofriendly natural dyeing of fabrics with ultrasound assisted dye extract of Pterocarpus indicus willd. Ind Crops Prod. 2021;171:113969. doi:10.1016/j.indcrop.2021.113969.
  • Meng LZ, Martin K, Weigel A, Yang XD, Lortie CJ. Tree diversity mediates the distribution of longhorn beetles (Coleoptera: Cerambycidae) in a changing tropical landscape (Southern Yunnan, SW China). PLoS One. 2013;8(9):e75481. doi:10.1371/journal.pone.0075481.
  • Sterck FJ, Duursma RA, Pearcy RW, Valladares F, Cieslak M, Weemstra M, Turnbull M. Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey. J Ecol. 2013;101(4):971–980. doi:10.1111/1365-2745.12076.
  • Galmés J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 2007;175(1):81–93. doi:10.1111/j.1469-8137.2007.02087.x.
  • Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1. doi:10.1104/pp.24.1.1.
  • Baek S, Woo S. Physiological and biochemical responses of two tree species in urban areas to different air pollution levels. Photosynt. 2010;48(1):23–29. doi:10.1007/s11099-010-0005-8.
  • Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 1980;149(1):78–90. doi:10.1007/BF00386231.
  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis Jr AR Jr, Long SP. Improved temperature response functions for models of Rubisco‐limited photosynthesis. Plant, Cell & Environ. 2001;24(2):253–259. doi:10.1111/j.1365-3040.2001.00668.x.
  • Onoda Y, Hikosaka K, Hirose T. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum. J Exp Bot. 2005;56(412):755–763. doi:10.1093/jxb/eri052.
  • Kasai M. Regulation of leaf photosynthetic rate correlating with leaf carbohydrate status and activation state of Rubisco under a variety of photosynthetic source/sink balances. Physiol Plant. 2008;134(1):216–226. doi:10.1111/j.1399-3054.2008.01105.x.
  • Lu KX, Cao BH, Feng XP, He Y, Jiang DA. Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica. 2009;47(3):381–387. doi:10.1007/s11099-009-0059-7.
  • Kim SH, Hamada T. Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnol Lett. 2005;27(23–24):1841–1845. doi:10.1007/s10529-005-3891-2.
  • Kim ST, Kim SG, Kang YH, Wang Y, Kim JY, Yi N, Kim JK, Rakwal R, Koh HJ, Kang KY. Proteomics analysis of rice lesion mimic mutant (spl1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J Proteome Res. 2008;7(4):1750–1760. doi:10.1021/pr700878t.
  • Ishii H, Ohsugi Y. Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting patterns of leaf emergence and maturation. Tree Physiol. 2011;31(8):819–830. doi:10.1093/treephys/tpr079.
  • Coste S, Roggy JC, Schimann H, Epron D, Dreyer E. A cost–benefit analysis of acclimation to low irradiance in tropical rainforest tree seedlings: leaf life span and payback time for leaf deployment. J Exp Bot. 2011;62(11):3941–3955. doi:10.1093/jxb/err092.
  • Krapp A, Hofmann B, Schäfer C, Stitt M. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink regulation’of photosynthesis? Plant J. 1993;3(6):817–828. doi:10.1111/j.1365-313X.1993.00817.x.
  • Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot. 2012;63(8):3001–3009. doi:10.1093/jxb/ers004.
  • Boardman NK. Comparative photosynthesis of sun and shade plants. Ann Rev Plant Physiol. 1977;28(1):355–377. doi:10.1146/annurev.pp.28.060177.002035.
  • Krause GH, Winter K, Matsubara S, Krause B, Jahns P, Virgo A, Aranda J, García M. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynth Res. 2012;113(1–3):273–285. doi:10.1007/s11120-012-9731-z.
  • Stokes VJ, Morecroft MD, Morison JIL. Comparison of leaf water use efficiency of oak and sycamore in the canopy over two growing seasons. Trees. 2010;24(2):297–306. doi:10.1007/s00468-009-0399-8.
  • Dai Y, Shen Z, Liu Y, Wang L, Hannaway D, Lu H. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum diels et Gilg. Environ Exp Bot. 2009;65(2–3):177–182. doi:10.1016/j.envexpbot.2008.12.008.
  • Barros FDV, Goulart MF, Sá Telles SB, Lovato MB, Valladares F, Lemos‐Filho JD. Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic forest versus cerrado (savanna). Plant Biol. 2012;14(1):208–215. doi:10.1111/j.1438-8677.2011.00474.x.
  • Martin CE, Hsu RCC, Lin TC. Sun/Shade adaptations of the photosynthetic apparatus of Hoya carnosa, an epiphytic CAM vine, in a subtropical rain forest in northeastern Taiwan. Acta Physiol Plant. 2010;32(3):575–581. doi:10.1007/s11738-009-0434-9.
  • Lichtenthaler HK, A A, Marek MV, Kalina J, Urban O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem. 2007;45(8):577–588. doi:10.1016/j.plaphy.2007.04.006.
  • Nyongesah MJ, Wang Q, Li P. Effectiveness of photochemical reflectance index to trace vertical and seasonal chlorophyll a/b ratio in Haloxylon ammodendron. Acta Physiol Plant. 2015;37(2):1–11. doi:10.1007/s11738-014-1747-x.
  • Favaretto VF, Martinez CA, Soriani HH, Furriel RP. Differential responses of antioxidant enzymes in pioneer and late-successional tropical tree species grown under sun and shade conditions. Environ Exp Bot. 2011;70(1):20–28. doi:10.1016/j.envexpbot.2010.06.003.
  • Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E. Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol. 2000;148(1):79–91. doi:10.1046/j.1469-8137.2000.00737.x.
  • Beneragama CK, Goto K. Chlorophyll a: b ratio increases under low-light in “shade-tolerant. Euglena Gracilis Trop Agric Res. 2010;22(1):12–25. doi:10.4038/tar.v22i1.2666.
  • Casierra-Posada F, Ávila-León OF. Shade tolerance of marigold plants (calendula officinalis). Rev UDCA Act Div Cien. 2015;18(1):119–126. doi:10.31910/rudca.v18.n1.2015.460.
  • Sarijeva G, Knapp M, Lichtenthaler HK. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. J Plant Physiol. 2007;164(7):950–955. doi:10.1016/j.jplph.2006.09.002.
  • Gomes-Laranjo J, Coutinho JP, Galhano V, Ferreira-Cardoso JV. Differences in photosynthetic apparatus of leaves from different sides of the chestnut canopy. Photosynt. 2008;46(1):63–72. doi:10.1007/s11099-008-0012-1.
  • Knapp AK, Gilliam FS. Response of Andropogon gerardii (poaceae) to fire‐induced high vs. low irradiance environments in tallgrass prairie: leaf structure and photosynthetic pigments. Am J Bot. 1985;72(11):1668–1671. doi:10.1002/j.1537-2197.1985.tb08435.x.
  • Stinziano JR, Way DA. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations. Plant, Cell & Environ. 2017;40(8):1296–1316. doi:10.1111/pce.12917.
  • Rzigui T, Cherif J, Zorrig W, Khaldi A, Nasr Z. Adjustment of photosynthetic carbon assimilation to higher growth irradiance in three-year-old seedlings of two Tunisian provenances of cork oak (Quercus suber L.). IForest. 2017;10(3):618–624. doi:10.3832/ifor2105-010.
  • Tian Y, Yuan H, Xie J, Zheng Y. Shade tolerance and suitability of tree species for planting in rubber plantations. J For Sci. 2016;78(1):11–18. doi:10.2989/20702620.2015.1089093.
  • Fox AR, Barberini ML, Ploschuk EL, Muschietti JP, Mazzella MA. A proteome map of a quadruple photoreceptor mutant sustains its severe photosynthetic deficient phenotype. J Plant Physiol. 2015;185:13–23. doi:10.1016/j.jplph.2015.07.004.
  • Touchette BW, Burkholder JM. Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Bio Ecol. 2000;250(1):169–205. doi:10.1016/S0022-0981(00)00196-9.
  • Sage RF, McKown AD. Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis? J Exp Bot. 2006;57(2):303–317. doi:10.1093/jxb/erj040.
  • Chen LS, Cheng L. The sun-exposed peel of apple fruit has a higher photosynthetic capacity than the shaded peel. Funct Plant Biol. 2007;34(11):1038–1048. doi:10.1071/FP07111.
  • Hidema J, Makino A, Mae T, Ojima K. Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence. Plant Physiol. 1991;97(4):1287–1293. doi:10.1104/pp.97.4.1287.
  • Seemann JR. Light adaptation/acclimation of photosynthesis and the regulation of ribulose-1,5-bisphosphate carboxylase activity in sun and shade plants. Plant Physiol. 1989;91(1):379–386. doi:10.1104/pp.91.1.379.
  • Niinemets Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecol Manag. 2010;260(10):1623–1639. doi:10.1016/j.foreco.2010.07.054.
  • Kelly J, Jose S, Nichols JD, Bristow M. Growth and physiological response of six Australian rainforest tree species to a light gradient. Forest Ecol Manag. 2009;257(1):287–293. doi:10.1016/j.foreco.2008.09.008.
  • Poorter L. Growth responses of 15 rainforest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecology. 1999;13(3):396–410. doi:10.1046/j.1365-2435.1999.00332.x.
  • Salgado‐Luarte C, Gianoli E. Herbivory may modify functional responses to shade in seedlings of a light‐demanding tree species. Funct Ecol. 2011;25(3):492–499. doi:10.1111/j.1365-2435.2010.01763.x.
  • Zhao D, Hao Z, Tao J. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora pall.). Plant Physiol Biochem. 2012;61:187–196. doi:10.1016/j.plaphy.2012.10.005.
  • Cregg BM, Teskey RO, Dougherty PM. Effect of shade stress on growth, morphology, and carbon dynamics of loblolly pine branches. Trees. 1993;7(4):208–213. doi:10.1007/BF00202075.
  • Kenzo T, Inoue Y, Yoshimura M, Yamashita M, Tanaka-Oda A, Ichie T. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia. 2015;177(1):191–202. doi:10.1007/s00442-014-3126-0.
  • Senevirathna AMWK, Stirling CM, Rodrigo VHL. Growth, photosynthetic performance and shade adaptation of rubber (Hevea brasiliensis) grown in natural shade. Tree Physiol. 2003;23(10):705–712. doi:10.1093/treephys/23.10.705.
  • Gyimah R, Nakao T. Early growth and photosynthetic responses to light in seedlings of three tropical species differing in successional strategies. New For. 2007;33(3):217–236. doi:10.1007/s11056-006-9028-1.
  • Retuerto R, Woodward F. The influences of increased CO2 and water supply on growth, biomass allocation and water use efficiency of Sinapis alba L. grown under different wind speeds. Oecologia. 1993;94(3):415–427. doi:10.1007/BF00317118.
  • Gratani L. Plant phenotypic plasticity in response to environmental factors. Adv Bot. 2014;2014:208747. doi:10.1155/2014/208747.
  • Umaña MN, Swenson NG, Marchand P, Cao M, Lin L, Zhang C. Relating leaf traits to seedling performance in a tropical forest: building a hierarchical functional framework. Ecology. 2021;102(7):e03385. doi:10.1002/ecy.3385.
  • Hu X, Wu X, Li C, Lu M, Liu T, Wang Y, Wang W, Schönbach C. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS One. 2012;7(11):e49500. doi:10.1371/journal.pone.0049500.
  • Zhang YX, Niu YQ, Wang XF, Wang ZH, Wang ML, Yang J, Wang YG, Zhang WJ, Song ZP, Li LF. Phenotypic and transcriptomic responses of the shade-grown species Panax ginseng to variable light conditions. Ann Bot. 2022;130(5):749–762. doi:10.1093/aob/mcac105.
  • Kappachery S, Sasi S, Alyammahi O, Alyassi A, Venkatesh J, Gururani MA. Overexpression of cytoplasmic solanum tuberosum glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene improves PSII efficiency and alleviates salinity stress in Arabidopsis. J Plant Interact. 2021;16(1):398–410. doi:10.1080/17429145.2021.1962420.
  • Escoubas JM, Lomas M, LaRoche J, Falkowski PG. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci U S A. 1995;92(22):10237–10241. doi:10.1073/pnas.92.22.10237.
  • Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 2015;82(3):449–465. doi:10.1111/tpj.12825.
  • Mikko T, Mirva P, Sari S, Paula M, Julia V, Alexander V, Yagut A, Eva-Mari A. State transitions revisited–a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol. 2006;2006(4):779–793. doi:10.1007/s11103-006-9044-8.
  • Walters RG. Towards an understanding of photosynthetic acclimation. J Exp Bot. 2005;56(411):435–447. doi:10.1093/jxb/eri060.
  • Viola S, Roseby W, Santabarbara S, Nürnberg D, Assunção R, Dau H, Sellés J, Boussac A, Fantuzzi A, Rutherford AW. Impact of energy limitations on function and resilience in long-wavelength photosystem II. Elife. 2022;11:e79890. doi:10.7554/eLife.79890.
  • Li T, Liu LN, Jiang CD, Liu YJ, Shi L. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. J Photochem Photobiol. 2014;137:31–38. doi:10.1016/j.jphotobiol.2014.04.022.
  • Keren N, Berg A, Van Kan PJ, Levanon H, Ohad I. Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci. 1997;94(4):1579–1584. doi:10.1073/pnas.94.4.1579.
  • Becana M, Salin ML, Ji L, Klucas RV. Flavin-mediated reduction of ferric leghemoglobin from soybean nodules. Planta. 1991;183(4):575–583. doi:10.1007/BF00194279.
  • Brear EM, Day DA, Smith PM. Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci. 2013;4:359. doi:10.3389/fpls.2013.00359.
  • Ji L, Wood S, Becana M, Klucas RV. Purification and characterization of soybean root nodule ferric leghemoglobin reductase. Plant Physiol. 1991;96(1):32–37. doi:10.1104/pp.96.1.32.
  • Ma J, Lv C, Xu M, Hao P, Wang Y, Shen W, Gao Z, Chen G, Lv C. Analysis of chlorophyll a fluorescence and proteomic differences of rice leaves in response to photooxidation. Acta Physiol Plant. 2017;39(2):1–14. doi:10.1007/s11738-016-2342-0.
  • Sangwan I, O’Brian MR. Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules. Plant Physiol. 1993;102(3):829–834. doi:10.1104/pp.102.3.829.
  • Hossain Z, Makino T, Komatsu S. Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean. J Proteom. 2012;75(13):4151–4164. doi:10.1016/j.jprot.2012.05.037.
  • Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BH. Chilling stress-induced proteomic changes in rice roots. J Plant Physiol. 2009;166(1):1–11. doi:10.1016/j.jplph.2008.02.001.
  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & Cellular Proteomics: MCP. 2006;5(3):484–496. doi:10.1074/mcp.M500251-MCP200.