1,164
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Both incompatible and compatible rhizobia inhabit the intercellular spaces of leguminous root nodules

ORCID Icon, , , &
Article: 2245995 | Received 04 Apr 2023, Accepted 02 Aug 2023, Published online: 13 Aug 2023

References

  • Bloom AJ. Assimilation of mineral nutrients. In: Taiz L Zeiger E, editors. Plant physiology. 3rd ed. Vol. Chapter 12. Sunderland, MA: Sinauer Associates; 2002. pp. 259–6. ISBN 0-87893-823-0.
  • Murray JD. Invasion by invitation: rhizobial infection in legumes. Mol Plant Microbe Interact. 2011;24:631–639. doi:10.1094/MPMI-08-10-0181.
  • Velázquez E, Martínez-Hidalgo P, Carro L, Alonso P, Peix A, Trujillo ME, Martínez-Molina E. Nodular endophytes: an untapped diversity. In: Beneficial plant microbial interactions: ecology and applications. Boca Raton, FL: CRC Press; 2013. pp. 215–236. doi:10.1201/b15251-11.
  • Martínez-Hidalgo P, Hirsch AM. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J. 2017;1(2):70–82. doi:10.1094/PBIOMES-12-16-0019-RVW.
  • Lu J, Yang F, Wang S, Ma H, Liang J, Chen Y. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, rhizobium multihospitium–like and Burkholderia pyrrocinia–like strains. Front Microbiol. 2017;8:2255. doi:10.3389/fmicb.2017.02255.
  • Etesami H. Root nodules of legumes: a suitable ecological niche for isolating non-rhizobial bacteria with biotechnological potential in agriculture. Curr Res Biotechnol. 2022;4:78–86. doi:10.1016/j.crbiot.2022.01.003.
  • Malik DK, Sindhu SS. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. cicer on nodulation and plant growth of chickpea (cicer arietinum). Physiol Mol Biol Plants. 2011;17:25–32. doi:10.1007/s12298-010-0041-7.
  • Hansen BL, Pessotti RC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxler MF. Cooperation, competition, and specialized metabolism in a simplified root nodule microbiome. mBio. 2020;11(4):e01917–20. doi:10.1128/mBio.01917-20.
  • Benezech C, Berrabah F, Jardinaud MF, Scornet AL, Milhes M, Jiang G, George J, Ratet P, Vailleau F, Gourion B. Medicago-sinorhizobium-ralstonia co-infection reveals legume nodules as pathogen confined infection sites developing weak defenses. Curr Biol. 2020;30(2):351–358.e4. doi:10.1016/j.cub.2019.11.066.
  • Benezech C, Scornet AL, Gourion B. Medicago-sinorhizobium-ralstonia: a model system to investigate pathogen-triggered inhibition of nodulation. Mol Plant Microbe Interact. 2021;34(5):499–503. doi:10.1094/MPMI-11-20-0319-SC.
  • Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, Kramer J, Wang X, Li M, Mei X, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat microbiol. 2020;5:1002–1010. doi:10.1038/s41564-020-0719-8.
  • Crosbie DB, Mahmoudi M, Radl V, Brachmann A, Schloter M, Kemen E, Marín M. Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus. New Phytol. 2022;234:242–255. doi:10.1111/nph.17988.
  • Hata S, Kojima S, Tsuda R, Kawajiri N, Kouchi H, Suzuki T, Uesaka K, Tanaka A. Characterization of photosynthetic Bradyrhizobium sp. strain SSBR45 isolated from the root nodules of Aeschynomene indica. Plant Signal Behav. 2023;18:e2184907. doi:10.1080/15592324.2023.2184907.
  • Sugawara M, Tsukui T, Kaneko T, Ohtsubo Y, Sato S, Nagata Y, Tsuda M, Mitsui H, Minamisawa K. Complete genome sequence of Bradyrhizobium diazoefficiens USDA 122, a nitrogen-fixing soybean symbiont. Genome Announc. 2017;5:e01743–16. doi:10.1128/genomeA.01743-16.
  • Yamaya-Ito H, Shimoda Y, Hakoyama T, Sato S, Kaneko T, Hossain MS, Shibata S, Kawaguchi M, Hayash M, Kouchi H, et al. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains. Plant J. 2018;93:5–16. doi:10.1111/tpj.13759.
  • Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R, Nuntakij A, Tittabutr P, Boonkerd N, Minamisawa K, Teaumroong N. Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl Environ Microbiol. 2015;81(9):3049–3061. doi:10.1128/AEM.04253-14.
  • Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ, Chun JY, Forsberg LS, Carlson R. nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol. 1994;176(3):620–623. doi:10.1128/jb.176.3.620-633.1994.
  • Yokoyama T, Kobayashi N, Kouchi H, Minamisawa K, Kaku H, Tsuchiya K. A lipochito-oligosaccharide, Nod factor, induces transient calcium influx in soybean suspension-cultured cells. Plant J. 2000;22:71–78. doi:10.1046/j.1365-313x.2000.00713.x.
  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science. 2007;316(5829):1307–1312. doi:10.1126/science.1139548.
  • Giraud E, Xu L, Chaintreuil C, Gargani D, Gully D, Sadowsky MJ. Photosynthetic Bradyrhizobium sp. strain ORS285 is capable of forming nitrogen-fixing root nodules on soybeans (Glycine max). Appl Environ Microbiol. 2013;79:2459–2462. doi:10.1128/AEM.03735-12.
  • Cole MA, Elkan GH. Transmissible resistance to penicillin G, neomycin, and chloramphenicol in rhizobium japonicum. Antimicrob Agents Chemother. 1973;4:248–253. doi:10.1128/AAC.4.3.248.
  • Stuurman N, Bras CP, Schlaman HRM, Wijfjes AHM, Bloemberg G, Spaink HP. Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants. Mol Plant Microbe Interact. 2000;13:1163–1169. doi:10.1094/MPMI.2000.13.11.1163.
  • Gage DJ. Analysis of infection thread development using gfp- and DsRed-expressing Sinorhizobium meliloti. J Bacteriol. 2002;184:7042–7046. doi:10.1128/JB.184.24.7042-7046.2002.
  • Sato T, Kato J, Sugawara S. Difference of infectivity between two similar soybean rhizobial strains and immunohistochemical evidence of double infection. Soil Sci Plant Nutr. 1988;34:247–254. doi:10.1080/00380768.1988.10415679.
  • Bonaldi K, Gargani D, Prin Y, Fardoux J, Gully D, Nouwen N, Goormachtig S, Giraud E. Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: the Nod-dependent versus the Nod-independent symbiotic interaction. Mol Plant Microbe Interact. 2011;24(11):1359–1371. doi:10.1094/MPMI-04-11-0093.
  • Ledermann R, Bartsch I, Remus-Emsermann MN, Vorholt JA, Fischer H-M. Stable fluorescent and enzymatic tagging of Bradyrhizobium diazoefficiens to analyze host-plant infection and colonization. Mol Plant Microbe Interact. 2015;28:959–967. doi:10.1094/MPMI-03-15-0054-TA.
  • Fischer H-M, Schneider K, Babst M, Hennecke H. GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol. 1999;171:279–289. doi:10.1007/s002030050711.
  • Okazaki S, Kaneko T, Sato S, Saeki K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci USA. 2013;110:17131–17136. doi:10.1073/pnas.1302360110.
  • Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun. 2010;1:10. doi:10.1038/ncomms1009.
  • Parniske M. Uptake of bacteria into living plant cells, the unifying and distinct feature of the nitrogen-fixing root nodule symbiosis. Curr Opin Plant Biol. 2018;44:164–174. doi:10.1016/j.pbi.2018.05.016.
  • De Faria SM, Hay GT, Sprent JI. Entry of rhizobia into roots of mimosa scabrella Bentham occurs between epidermal cells. Microbiology. 1988;134:2291–2296. doi:10.1099/00221287-134-8-2291.
  • James EK, Minchin FR, Iannetta PPM, Sprent JI. Temporal relationships between nitrogenase and intercellular glycoprotein in developing white lupin nodules. Ann Bot. 1997;79:493–503. doi:10.1006/anbo/79.5.493.
  • González-Sama A, Lucas MM, de Felipe MR, Pueyo JJ. An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus). New Phytol. 2004;163:371–380. doi:10.1111/j.1469-8137.2004.01121.x.
  • Rae AL, Bonfante-Fasolo P, Brewin NJ. Structure and growth of infection threads in the legume symbiosis with rhizobium leguminosarum. Plant J. 1992;2:385–395. doi:10.1111/j.1365-313X.1992.00385.x.
  • Liang J, Klingl A, Lin Y-Y, Boul E, Thomas-Oates J, Marín M. A subcompatible rhizobium strain reveals infection duality in Lotus. J Exp Bot. 2019;70:1903–1913. doi:10.1093/jxb/erz057.
  • Ibáñez F, Wall L, Fabra A. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. J Exp Bot. 2017;68:1905–1918. doi:10.1093/jxb/erw387.
  • Sprent JI, James EK. Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol. 2007;144:575–581. doi:10.1104/pp.107.096156.
  • Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet. 2015;11(6):e1005280. doi:10.1371/journal.pgen.1005280.
  • Alunni B, Gourion B. Terminal bacteroid differentiation in the legume−rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. New Phytol. 2016;211(2):411–417. doi:10.1111/nph.14025.
  • Oono R, Denison RF. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant Physiol. 2010;154(3):1541–1548. doi:10.1104/pp.110.163436.