1,153
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Identification, expression analysis of quinoa betalain biosynthesis genes and their role in seed germination and cold stress

, , ORCID Icon, , &
Article: 2250891 | Received 13 Jun 2023, Accepted 07 Aug 2023, Published online: 24 Aug 2023

References

  • Gandia-Herrero F, Garcia-Carmona F. Biosynthesis of betalains: yellow and violet plant pigments. Trends Plant Sci. 2013;18(6):334–15. doi:10.1016/j.tplants.2013.01.003.
  • Polturak G, Aharoni A. “La Vie en Rose”: Biosynthesis, sources, and applications of betalain pigments. Mol Plant. 2018;11(1):7–22. doi:10.1016/j.molp.2017.10.008.
  • Timoneda A, Feng T, Sheehan H, Walker-Hale N, Pucker B, Lopez-Nieves S, Guo R, Brockington S. The evolution of betalain biosynthesis in Caryophyllales. New Phytol. 2019;224(1):71–85. doi:10.1111/nph.15980.
  • Khan MI, Giridhar P. Plant betalains: Chemistry and biochemistry. Phytochemistry. 2015;117:267–295. doi:10.1016/j.phytochem.2015.06.008.
  • Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54(4):733–749. doi:10.1111/j.1365-313X.2008.03447.x.
  • Li G, Meng X, Zhu M, Li Z. Research progress of betalain in response to adverse stresses and evolutionary relationship compared with anthocyanin. Molecules. 2019;24(17):3078. doi:10.3390/molecules24173078.
  • Zhao X, Zhang Y, Long T, Wang S, Yang J. Regulation mechanism of Plant pigments biosynthesis: Anthocyanins, carotenoids, and betalains. Metabolites. 2022;12(9):871. doi:10.3390/metabo12090871.
  • Sakuta M. Diversity in plant red pigments: anthocyanins and betacyanins. Plant Biotechnol Rep. 2013;8(1):37–48. doi:10.1007/s11816-013-0294-z.
  • Kumorkiewicz-Jamro A, Swiergosz T, Sutor K, Sporna-Kucab A, Wybraniec S. Multi-colored shades of betalains: recent advances in betacyanin chemistry. Nat Prod Rep. 2021;38(12):2315–2346. doi:10.1039/d1np00018g.
  • Casique-Arroyo G, Martinez-Gallardo N, Gonzalez de la Vara L, Delano-Frier JP, Wu K. Betacyanin biosynthetic genes and enzymes are differentially induced by (a)biotic stress in Amaranthus hypochondriacus. PLoS One. 2014;9(6):e99012. doi:10.1371/journal.pone.0099012.
  • Gandia-Herrero F, Escribano J, Garcia-Carmona F. Biological activities of Plant pigments betalains. Crit Rev Food Sci Nutr. 2016;56(6):937–945. doi:10.1080/10408398.2012.740103.
  • Lystvan K, Kumorkiewicz A, Szneler E, Wybraniec S. Study on betalains in celosia cristata linn. Callus culture and identification of new malonylated amaranthins. J Agric Food Chem. 2018;66(15):3870–3879. doi:10.1021/acs.jafc.8b01014.
  • Liu R, Cui B, Lu X, Song J. The positive effect of salinity on nitrate uptake in Suaeda salsa. Plant Physiol Biochem. 2021;166:958–963. doi:10.1016/j.plaphy.2021.07.010.
  • Stintzing FC, Herbach KM, Mosshammer MR, Carle R, Yi W, Sellappan S, Akoh CC, Bunch R, Felker P. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem. 2005;53(2):442–451. doi:10.1021/jf048751y.
  • Calva-Estrada SJ, Jimenez-Fernandez M, Lugo-Cervantes E. Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry. Food Chem. 2022;4:100089. doi:10.1016/j.fochms.2022.100089.
  • Calvi P, Terzo S, Amato A. Betalains: colours for human health. Nat Prod Res. 2022;1–20. doi:10.1080/14786419.2022.2106481.
  • Henarejos-Escudero P, Hernandez-Garcia S, Martinez-Rodriguez P, Garcia-Carmona F, Gandia-Herrero F. Bioactive potential and spectroscopical characterization of a novel family of plant pigments betalains derived from dopamine. Food Res Int. 2022;162:111956. doi:10.1016/j.foodres.2022.111956.
  • Wijesinghe VN, Choo WS. Antimicrobial betalains. J Appl Microbiol. 2022;133(6):3347–3367. doi:10.1111/jam.15798.
  • Sadowska-Bartosz I, Bartosz G. Biological properties and applications of betalains. Molecules. 2021;26(9):2520. doi:10.3390/molecules26092520.
  • Allegra M, Furtmuller PG, Jantschko W, Zederbauer M, Tesoriere L, Livrea MA, Obinger C. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochem Biophys Res Commun. 2005;332(3):837–844. doi:10.1016/j.bbrc.2005.05.031.
  • Tesoriere L, Butera D, D’Arpa D, Di Gaudio F, Allegra M, Gentile C, Livrea MA. Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radic Res. 2003;37(6):689–696. doi:10.1080/1071576031000097490.
  • DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol. 2015;11(7):465–471. doi:10.1038/nchembio.1816.
  • Chang YC, Chiu YC, Tsao NW, Chou YL, Tan CM, Chiang YH, Liao PC, Lee YC, Hsieh LC, Wang SY, et al. Elucidation of the core betalain biosynthesis pathway in Amaranthus tricolor. Sci Rep. 2021;11(1):6086. doi:10.1038/s41598-021-85486-x.
  • Carreon-Hidalgo JP, Franco-Vasquez DC, Gomez-Linton DR, Perez-Flores LJ. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int. 2022;151:110821. doi:10.1016/j.foodres.2021.110821.
  • Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, Pliner M, Levy M, Rogachev I, Aharoni A. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proc Natl Acad Sci. 2017;114(34):9062–9067. doi:10.1073/pnas.1707176114.
  • Grutzner R, Schubert R, Horn C, Yang C, Vogt T, Marillonnet S. Engineering betalain biosynthesis in Tomato for high level betanin production in fruits. Front Plant Sci. 2021;12:682443. doi:10.3389/fpls.2021.682443.
  • Lopez-Nieves S, Yang Y, Timoneda A, Wang M, Feng T, Smith SA, Brockington SF, Maeda HA. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. New Phytol. 2018;217(2):896–908. doi:10.1111/nph.14822.
  • Polturak G, Breitel D, Grossman N, Sarrion-Perdigones A, Weithorn E, Pliner M, Orzaez D, Granell A, Rogachev I, Aharoni A. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytol. 2016;210(1):269–283. doi:10.1111/nph.13796.
  • Bean A, Sunnadeniya R, Akhavan N, Campbell A, Brown M, Lloyd A. Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution. New Phytol. 2018;219(1):287–296. doi:10.1111/nph.15159.
  • Harris NN, Javellana J, Davies KM, Lewis DH, Jameson PE, Deroles SC, Calcott KE, Gould KS, Schwinn KE. Betalain production is possible in anthocyanin producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biol. 2012;12(1):34. doi:10.1186/1471-2229-12-34.
  • Hou Y, Liu X, Li S, Zhang X, Yu S, Zhao GR. Metabolic engineering of Escherichia coli for de Novo production of betaxanthins. J Agric Food Chem. 2020;68(31):8370–8380. doi:10.1021/acs.jafc.0c02949.
  • Nakatsuka T, Yamada E, Takahashi H, Imamura T, Suzuki M, Ozeki Y, Tsujimura I, Saito M, Sakamoto Y, Sasaki N, et al. Genetic engineering of yellow betalain pigments beyond the species barrier. Sci Rep. 2013;3(1):1970. doi: 10.1038/srep01970.
  • Sasaki N, Abe Y, Wada K, Koda T, Goda Y, Adachi T, Ozeki Y. Amaranthin in feather cockscombs is synthesized via glucuronylation at the cyclo-DOPA glucoside step in the betacyanin biosynthetic pathway. J Plant Res. 2005;118(6):439–442. doi:10.1007/s10265-005-0237-z.
  • Imamura T, Isozumi N, Higashimura Y, Miyazato A, Mizukoshi H, Ohki S, Mori M. Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells. Plant Biotechnol J. 2019;17(5):969–981. doi:10.1111/pbi.13032.
  • Das SS, Gauri SS, Misra BB, Biswas M, Dey S. Purification and characterization of a betanidin glucosyltransferase from Amaranthus tricolor L catalyzing non-specific biotransformation of flavonoids. Plant Sci. 2013;211:61–69. doi:10.1016/j.plantsci.2013.07.003.
  • Vogt T. Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta. 2002;214(3):492–495. doi:10.1007/s00425-001-0685-1.
  • Vogt T, Grimm R, Strack D. Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J. 1999;19(5):509–519. doi:10.1046/j.1365-313x.1999.00540.x.
  • Escribano J, Cabanes J, Jimenez-Atienzar M, Ibanez-Tremolada M, Gomez-Pando LR, Garcia-Carmona F, Gandia-Herrero F. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 2017;234:285–294. doi:10.1016/j.foodchem.2017.04.187.
  • Tang Y, Li X, Zhang B, Chen PX, Liu R, Tsao R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015;166:380–388. doi:10.1016/j.foodchem.2014.06.018.
  • Ain QT, Siddique K, Bawazeer S, Ali I, Mazhar M, Rasool R, Mubeen B, Ullah F, Unar A, Jafar TH. Adaptive mechanisms in quinoa for coping in stressful environments: an update. PeerJ. 2023;11:e14832. doi:10.7717/peerj.14832.
  • Henarejos-Escudero P, Guadarrama-Flores B, Guerrero-Rubio MA, Gomez-Pando LR, Garcia-Carmona F, Gandia-Herrero F. Development of betalain producing callus lines from colored quinoa varieties (Chenopodium quinoa Willd). J Agric Food Chem. 2018;66(2):467–474. doi:10.1021/acs.jafc.7b04642.
  • Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM, Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, et al. The genome of Chenopodium quinoa. Nature. 2017;542(7641):307–312. doi:10.1038/nature21370.
  • Chen C, Chen H, Zhang Y, Thomas HR, Frank M, He Y, Xia R. Tbtools: An Integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi:10.1016/j.molp.2020.06.009.
  • Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx DC. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 2021;49(W1):W216–W227. doi:10.1093/nar/gkab225.
  • Savojardo C, Martelli PL, Fariselli P, Profiti G, Casadio R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018;46(W1):W459–W466. doi:10.1093/nar/gky320.
  • Tamura K, Stecher G, Kumar S, Battistuzzi FU. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi:10.1093/molbev/msab120.
  • Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–W296. doi:10.1093/nar/gkab301.
  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49. doi: 10.1093/nar/gkr1293.
  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–3302. doi:10.1093/molbev/msx248.
  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–1297. doi:10.1093/bioinformatics/btu817.
  • Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43(W1):W39–49. doi:10.1093/nar/gkv416.
  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–327. doi:10.1093/nar/30.1.325.
  • Hao Y, Hong Y, Guo H, Qin P, Huang A, Yang X, Ren G. Transcriptomic and metabolomic landscape of quinoa during seed germination. BMC Plant Biol. 2022;22(1):237. doi:10.1186/s12870-022-03621-w.
  • Willems E, Leyns L, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem. 2008;379(1):127–129. doi:10.1016/j.ab.2008.04.036.
  • Hlásná Cepková P, Dostalíková L, Viehmannová I, Jágr M, Janovská D. Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. Front Sustain Food Syst. 2022;6:960159. doi:10.3389/fsufs.2022.960159.
  • Hinojosa L, González JA, Barrios-Masias FH, Fuentes F, Murphy KM. Quinoa abiotic stress responses: A review. Plants (Basel). 2018;7(4):106. doi:10.3390/plants7040106.
  • Tang Y, Li X, Chen PX, Zhang B, Hernandez M, Zhang H, Marcone MF, Liu R, Tsao R. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa willd. genotypes. Food Chem. 2015;174:502–508. doi:10.1016/j.foodchem.2014.11.040.
  • Nirmal NP, Mereddy R, Maqsood S. Recent developments in emerging technologies for beetroot pigment extraction and its food applications. Food Chem. 2021;356:129611. doi:10.1016/j.foodchem.2021.129611.
  • Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red beetroot betalains: Perspectives on extraction, processing, and potential health benefits. J Agric Food Chem. 2020;68(42):11595–11611. doi:10.1021/acs.jafc.0c04241.
  • Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GK, Moore MJ, Smith SA. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol. 2015;207(4):1170–1180. doi:10.1111/nph.13441.
  • Sheehan H, Feng T, Walker-Hale N, Lopez-Nieves S, Pucker B, Guo R, Yim WC, Badgami R, Timoneda A, Zhao L, et al. Evolution of l-DOPA 4,5-dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales. New Phytol. 2020;227(3):914–929. doi:10.1111/nph.16089.
  • Hua Q, Chen C, Xie F, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. A genome-wide identification study Reveals that HmoCYP76AD1, HmoDODAalpha1 and HmocDOPA5GT involved in betalain biosynthesis in hylocereus. Genes. 2021;12(12):1858. doi:10.3390/genes12121858.
  • Jain G, Schwinn KE, Gould KS. Betalain induction by l-DOPA application confers photoprotection to saline-exposed leaves of disphyma australe. New Phytol. 2015;207(4):1075–1083. doi:10.1111/nph.13409.
  • Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A. Advances in the MYB–bHLH–WD Repeat (MBW) pigment regulatory model: Addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol. 2017;58(9):1431–1441. doi:10.1093/pcp/pcx075.
  • Zheng X, Liu S, Cheng C, Guo R, Chen Y, Xie L, Mao Y, Lin Y, Zhang Z, Lai Z. Cloning and expression analysis of betalain biosynthesis genes in Amaranthus tricolor. Biotechnol Lett. 2016;38(4):723–729. doi:10.1007/s10529-015-2021-z.
  • Ohno S, Makishima R, Doi M, Sunkar R. Post-transcriptional gene silencing of CYP76AD controls betalain biosynthesis in bracts of bougainvillea. J Exp Bot. 2021;72(20):6949–6962. doi:10.1093/jxb/erab340.