750
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Dynamic changes in the levels of metabolites and endogenous hormones during the germination of Zanthoxylum nitidum (Roxb.) DC. Seeds

, , , , &
Article: 2251750 | Received 14 Jul 2023, Accepted 14 Aug 2023, Published online: 28 Aug 2023

References

  • Huang C. Flora of China (volume 43, division 2). Beijing: Science Press; 1997. p. 13.
  • Lu Q, Ma R, Yang Y, Mo Z, Pu X, Li C. Zanthoxylum nitidum (Roxb.) DC: traditional uses, phytochemistry, pharmacological activities and toxicology. J Ethnopharmacol. 2020;260:112946. doi:10.1016/j.jep.2020.112946.
  • Hu J, Zhang WD, Liu RH, Zhang C, Shen YH, Li HL, Liang MJ, Xu XK. Benzophenanthridine alkaloids from Zanthoxylum nitidum (Roxb.) DC, and their analgesic and anti‐inflammatory activities. Chem Biodivers. 2006;3(9):990–10. doi:10.1002/cbdv.200690108.
  • Chen J-J, Lin Y-H, Day S-H, Hwang T-L, Chen I-S. New benzenoids and anti-inflammatory constituents from Zanthoxylum nitidum. Food Chem. 2011;125(2):282–287. doi:10.1016/j.foodchem.2010.09.069.
  • Zhao L-N, Guo X-X, Liu S, Feng L, Bi Q-R, Wang Z, Tan N-H. (±)-Zanthonitidine A, a pair of enantiomeric Furoquinoline alkaloids from Zanthoxylum nitidum with antibacterial activity. Nat Prod Bioprospect. 2018;8(5):361–367. doi:10.1007/s13659-018-0169-7.
  • Bhattacharya S, Zaman M, Haldar P. Antibacterial activity of stem bark and root of Indian Zanthoxylum nitidum. Asian J Pharm Clin Res. 2009;2:30–34.
  • Chen Q, Li J, Liu G, Lu X, Chen K, Tian J, Liang C. A berberine bridge enzyme-like protein, GmBBE-like43, confers soybean’s coordinated adaptation to aluminum toxicity and phosphorus deficiency. Front Plant Sci. 2022;13:947986. doi:10.3389/fpls.2022.947986.
  • Wang CY, Qin F, Wang C-G, Kim D, Li J-J, Chen X-L, Wang H-S, Lee SK. Novel Lignans from Zanthoxylum nitidum and antiproliferation activity of sesaminone in osimertinib-resistant non-small cell lung cancer cells. Bioorg Chem. 2023;134:106445. doi:10.1016/j.bioorg.2023.106445.
  • Hu J, Shi X, Mao X, Chen J, Zhu L, Zhao Q. Antinociceptive activity of rhoifoline a from the ethanol extract of Zanthoxylum nitidum in mice. J Ethnopharmacol. 2013;150(3):828–834. doi:10.1016/j.jep.2013.04.035.
  • Ali F, Alom S, Zaman MK. Ethnobotany, phytochemistry and pharmacological properties of Zanthoxylum nitidum: a systemic review. 2022.
  • Peng Z, Wu M, Xie Z, Yang X, Lai M. Investigation of wild resource of Zanthoxylum nitidum. Pharmacy Today. 2018;28:500–504.
  • Yu L, Huang B, Tan X, Guo B. Survey of wild germplasm of Zanthoxylum nitidum in Guangxi. Guihaia. 2009;29:231–235.
  • Zhang Z, He R, Zhan R, Lu S, Tang L, Xing J. Investigation of physical factors of inhibiting germination of Zanthoxylum nitidum (Roxb.) DC seeds. J Guangzhou Uni Trad Chin Med. 2016;33:411–415.
  • Sun S, Jiang S, Hu Y, Li H, Lin Z, Li F. Study on propagation technique of Zanthoxylum nitidum. J Anhui Agri Sci. 2008;36:6787–6789.
  • Qin Y, Hu R, Zhao H, Wei G, Lu Z, Huang Y. Taxonomic delimitation and molecular identification of clusters within the species Zanthoxylum nitidum (Rutaceae) in China. PhytoKeys. 2022;196:1–20. doi:10.3897/phytokeys.196.79566.
  • Zhu Y, Lin Y, Huang Y, Wei K. Effect of stratification on germination of Zanthoxylum nitidum seeds. Seed. 2023;42:99–104.
  • Welbaum G, Bradford K, Yim K-O, Booth D, Oluoch M. Biophysical, physiological and biochemical processes regulating seed germination. Seed Sci Res. 1998;8(2):161–172. doi:10.1017/S0960258500004074.
  • Liu S, Wang W, Lu H, Shu Q, Zhang Y, Chen Q. New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: a review. TRENDS IN FOOD SCI TECHNOL. 2022;123:187–197. doi:10.1016/j.tifs.2022.02.029.
  • Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol. 2006;142(3):839–854. doi:10.1104/pp.106.086694.
  • Zhao M, Zhang H, Yan H, Qiu L, Baskin CC. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci. 2018;9:234. doi:10.3389/fpls.2018.00234.
  • Zhang J, Qian J-Y, Bian Y-H, Liu X, Wang C-L. Transcriptome and metabolite conjoint analysis reveals the seed dormancy release process in callery pear. IJMS. 2022;23(4):2186. doi:10.3390/ijms23042186.
  • Zhou M, Xu Y, Wang F, Yang X, Lu S, Zhang Y. Effects of seasonal temperature regimes on embryo growth and endogenous hormones of Taxus chinensis var. mairei seeds. Front Plant Sci. 2023;14:577. doi:10.3389/fpls.2023.1114629.
  • Black M. The role of endogenous hormones in germination and dormancy. Israel J Bot. 1980;29:181–192.
  • Shu K, Liu X-D, Xie Q, He Z-H. Two faces of one seed: hormonal regulation of dormancy and germination, molecular plant. Mol Plant. 2016;9(1):34–45. doi:10.1016/j.molp.2015.08.010.
  • Han C, Zhen S, Zhu G, Bian Y, Yan Y. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. Plant Physiol Bioch. 2017;115:320–327. doi:10.1016/j.plaphy.2017.04.013.
  • Hao Y, Hong Y, Guo H, Qin P, Huang A, Yang X, Ren G. Transcriptomic and metabolomic landscape of quinoa during seed germination. BMC Plant Biol. 2022;22(1):1–13. doi:10.1186/s12870-022-03621-w.
  • Li Y, Zhou C, Yan X, Zhang J, Xu J. Simultaneous analysis of ten phytohormones in Sargassum horneri by high‐performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Sep Sci. 2016;39(10):1804–1813. doi:10.1002/jssc.201501239.
  • Hui W, Wang Y, Yan S, Shi J, Huang W, Zayed MZ, Peng C, Chen X, Wu G. Simultaneous analysis of endogenous plant growth substances during floral sex differentiation in Jatropha curcas L. using HPLC–ESI–MS/MS. Sci Hortic (Amsterdam). 2018;241:209–217. doi:10.1016/j.scienta.2018.06.086.
  • Šimura J, Antoniadi I, Široká J, Tarkowská DE, Strnad M, Ljung K, Novák O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177(2):476–489. doi:10.1104/pp.18.00293.
  • Baskin JM, Baskin CC. A classification system for seed dormancy, seed science research. Seed Sci Res. 2004;14(1):1–16. doi:10.1079/SSR2003150.
  • Baskin CC, Baskin JM. Cold stratification in winter is more than enough for seed dormancy-break of summer annuals in eastern North America: implications for climate change. Seed Sci Res. 2022;32(2):63–69. doi:10.1017/S0960258522000125.
  • Miransari M, Smith D. Plant hormones and seed germination, environmental and experimental botany. Environ Exp Bot. 2014;99:110–121. doi:10.1016/j.envexpbot.2013.11.005.
  • Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant development and crop yield: the role of gibberellins. Plants. 2022;11(19):2650. doi:10.3390/plants11192650.
  • Xiong M, Chu L, Li Q, Yu J, Yang Y, Zhou P, Zhou Y, Zhang C, Fan X, Zhao D, et al. Brassinosteroid and gibberellin coordinate rice seed germination and embryo growth by regulating glutelin mobilization. Crop J. 2021;9(5):1039–1048. doi:10.1016/j.cj.2020.11.006.
  • Mendoza MS, Dubreucq B, Miquel M, Caboche M, Lepiniec L. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRnas in Arabidopsis leaves. FEBS Lett. 2005;579(21):4666–4670. doi:10.1016/j.febslet.2005.07.037.
  • Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72- AOC ’ pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytol. 2020;228(4):1336–1353. doi:10.1111/nph.16774.
  • Anaya F, Fghire R, Wahbi S, Loutfi K. Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. J Saudi Soc Agric Sci. 2018;17(1):1–8. doi:10.1016/j.jssas.2015.10.002.
  • Rzewuski G, Sauter M. Ethylene biosynthesis and signaling in rice. Plant Sci. 2008;175(1–2):32–42. doi:10.1016/j.plantsci.2008.01.012.
  • Liu M, Gao H, Gao Y, Xue X. Study on the physiological and biochemical changes of Phoebe sheareri seed during its dormancy breaking. J Nanjing For Uni Nat Sci Ed. 2023;47:9.
  • Wang W, Guan R, Lu J, Zhang C, Xu D, Lin H. Effects of soakingGA3 on antioxidant enzymes and endogenous hormones during Scutellaria baicalensis seed germination of under salt stress. J Chin Med Mater. 2022;45:288–292.
  • Yuan M, Yang T, Sun Y. Effects of soaking seed with gibberellin on seed germination and endogenous hormone changes of Radix bupleuri. Seed. 2021;40:81–85.
  • Bewley JD. Seed germination and dormancy, the plant cell. Plant Cell. 1997;9:1055. doi:10.1105/tpc.9.7.1055.
  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol. 2012;63(1):507–533. doi:10.1146/annurev-arplant-042811-105550.
  • Qu C, Zuo Z, Cao L, Huang J, Sun X, Zhang P, Yang C, Li L, Xu Z, Liu G. Comprehensive dissection of transcript and metabolite shifts during seed germination and post-germination stages in poplar, BMC plant biology. BMC Plant Biol. 2019;19(1):1–15. doi:10.1186/s12870-019-1862-3.
  • Stasolla C, Katahira R, Thorpe TA, Ashihara H. Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol. 2003;160(11):1271–1295. doi:10.1078/0176-1617-01169.
  • Deltour R. Nuclear activation during early germination of the higher plant embryo. J Cell Sci. 1985;75(1):43–83. doi:10.1242/jcs.75.1.43.
  • Delgado-García E, Piedras P, Gómez-Baena G, García-Magdaleno IM, Pineda M, Gálvez-Valdivieso G. Nucleoside metabolism is induced in common bean during early seedling development. Front Plant Sci. 2021;12:651015. doi:10.3389/fpls.2021.651015.
  • Han P, Li S, Yao K, Geng H, Liu J, Wang Y, Lin J. Integrated metabolomic and transcriptomic strategies to reveal adaptive mechanisms in castor plant during germination stage under alkali stress. Environ Exp Bot. 2022;203:105031. doi:10.1016/j.envexpbot.2022.105031.
  • Niehaus M, Straube H, Specht A, Baccolini C, Witte CP, Herde M. The nucleotide metabolome of germinating Arabidopsis thaliana seeds reveals a central role for thymidine phosphorylation in chloroplast development. Plant Cell. 2022;34(10):3790–3813. doi:10.1093/plcell/koac207.
  • THOMPSON JF. Arginine synthesis, proline synthesis, and related processes. Amino acids and derivatives. Elsevier; 1980, 375–402. 10.1016/B978-0-12-675405-6.50016-4
  • Winter G, Todd CD, Trovato M, Forlani G, Funck D. Physiological implications of arginine metabolism in plants, Frontiers in plant science. Front Plant Sci. 2015;6:534. doi:10.3389/fpls.2015.00534.
  • Zeid I. Effect of arginine and urea on polyamines content and growth of bean under salinity stress. Acta Physiol Plant. 2009;31(1):65–70. doi:10.1007/s11738-008-0201-3.
  • Matysiak K, Kierzek R, Siatkowski I, Kowalska J, Krawczyk R, Miziniak W. Effect of exogenous application of amino acids l-arginine and glycine on maize under temperature stress. Agronomy. 2020;10(6):769. doi:10.3390/agronomy10060769.
  • Hang R, Wang Z, Yang C, Luo L, Mo B, Chen X, Sun J, Liu C, Cao X. Protein arginine methyltransferase 3 fine-tunes the assembly/disassembly of pre-ribosomes to repress nucleolar stress by interacting with RPS2B in Arabidopsis, molecular plant. Mol Plant. 2021;14(2):223–236. doi:10.1016/j.molp.2020.10.006.
  • Quettier A-L, Eastmond PJ. Storage oil hydrolysis during early seedling growth. Plant Physiol Bioch. 2009;47(6):485–490. doi:10.1016/j.plaphy.2008.12.005.
  • dos Santos Maraschin F, Kulcheski FR, Segatto ALA, Trenz TS, Barrientos-Diaz O, Margis-Pinheiro M, Margis R, Turchetto-Zolet AC. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: function, biotechnological application and evolution. Prog Lipid Res. 2019;73:46–64. doi:10.1016/j.plipres.2018.12.001.
  • Xu C, Shanklin J. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu Rev Plant Biol. 2016;67(1):179–206. doi:10.1146/annurev-arplant-043015-111641.
  • Nietzel T, Mostertz J, Ruberti C, Née G, Fuchs P, Wagner S, Moseler A, Müller-Schüssele SJ, Benamar A, Poschet G, et al. Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proc Natl Acad Sci USA. 2020;117(1):741–751. doi:10.1073/pnas.1910501117.
  • Rosental L, Nonogaki H, Fait A. Activation and regulation of primary metabolism during seed germination. Seed Sci Res. 2014;24(1):1–15. doi:10.1017/S0960258513000391.