886
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Coordinated recruitment of conserved defense-signaling pathways in PVYO-Infected Nicotiana benthamiana

, , , & ORCID Icon
Article: 2252972 | Received 25 Jul 2023, Accepted 23 Aug 2023, Published online: 01 Sep 2023

References

  • Karasev AV, Gray SM. Continuous and emerging challenges of potato virus Y in potato. Annu Rev Phytopathol. 2013;5151:571–12. doi:10.1146/annurev-phyto-082712-102332.
  • Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, HOHN B, SAUNDERS K, CANDRESSE T, AHLQUIST P, et al. Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 2011;12(9):938–954. doi:10.1111/j.1364-3703.2011.00752.x.
  • Hu X, Nie X, He C, Xiong X. Differential pathogenicity of two different recombinant PVY(NTN) isolates in physalis floridana is likely determined by the coat protein gene. Virol J. 2011;8:207. doi:10.1186/1743-422X-8-207.
  • Karataș K, Arpacı B, Buzkan N, Tekik A. Investigation for reactions of peppers with Pvr loci to potato virus Y (Pvy). Gaziosmanpașa Üniversitesi Ziraat Fakültesi Dergisi. 2017;34:65–73. doi:10.13002/jafag900.
  • Wang XH, Ye BS, Kang XP, Zhou T, Lai TF. Potato virus X-induced LeHB-1 silencing delays tomato fruit ripening. J Am Soc Hortic Sci. 2018;143:454–461. doi:10.21273/JASHS04497-18.
  • Chikh-Ali M, Tran LT, Price WJ, Karasev AV. Effects of the Age-related resistance to potato virus Y in potato on the systemic spread of the virus, Incidence of the potato tuber necrotic ringspot disease, tuber yield, and translocation rates into progeny tubers. Plant Dis. 2020;104:269–275. doi:10.1094/PDIS-06-19-1201-RE.
  • Garcia-Marcos A, Pacheco R, Martianez J, Gonzalez-Jara P, Diaz-Ruiz JR, Tenllado F. Transcriptional changes and oxidative stress associated with the synergistic interaction between potato virus X and potato virus Y and their relationship with symptom expression. Mol Plant Microbe Interact. 2009;22(11):1431–1444. doi:10.1094/MPMI-22-11-1431.
  • Dunoyer P, Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol. 2005;8(4):415–423. doi:10.1016/j.pbi.2005.05.012.
  • Li F, Ding SW. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol. 2006;60(1):503–531. doi:10.1146/annurev.micro.60.080805.142205.
  • Valli A, López-Moya JJ, García JA. RNA silencing and its suppressors in the plant-virus interplay. eLS. 2009.
  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43(1):67–93. doi:10.1146/annurev-genet-102808-114910.
  • Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27(1):107–132. doi:10.1146/annurev-cellbio-092910-154005.
  • Liu Y, Bassham DC. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol. 2012;63(1):215–237. doi:10.1146/annurev-arplant-042811-105441.
  • Su T, Li XZ, Yang MY, Shao Q, Zhao YX, Ma CL, Wang P. Autophagy: an intracellular degradation pathway regulating plant survival and stress response. Front Plant Sci. 2020;11:11. doi:10.3389/fpls.2020.00164.
  • Bozhkov PV. Plant autophagy: mechanisms and functions. J Exp Bot. 2018;69(6):1281–1285. doi:10.1093/jxb/ery070.
  • Martens S, Fracchiolla D. Activation and targeting of ATG8 protein lipidation. Cell Discov. 2020;6(1):23. doi:10.1038/s41421-020-0155-1.
  • O’Brien JA, Daudi A, Butt VS, Bolwell GP. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta. 2012;236(3):765–779. doi:10.1007/s00425-012-1696-9.
  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS. ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci. 2015;6:6. doi:10.3389/fpls.2015.00069.
  • Ismayil A, Yang M, Liu Y. Role of autophagy during plant-virus interactions. Semin Cell Dev Biol. 2020;101:36–40. doi:10.1016/j.semcdb.2019.07.001.
  • Perez-Perez ME, Lemaire SD, Crespo JL. Reactive oxygen species and autophagy in plants and algae. Plant Physiol. 2012;160(1):156–164. doi:10.1104/pp.112.199992.
  • Gao QM, Zhu S, Kachroo P, Kachroo A. Signal regulators of systemic acquired resistance. Front Plant Sci. 2015;6:228. doi:10.3389/fpls.2015.00228.
  • Balint-Kurti P. The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol. 2019;20:1163–1178. doi:10.1111/mpp.12821.
  • Kitajima S, Sato F. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J Biochem. 1999;125(1):1–8. doi:10.1093/oxfordjournals.jbchem.a022244.
  • Van Loon LC, Van Strien E. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55(2):85–97. doi:10.1006/pmpp.1999.0213.
  • Lukan T, Zupanic A, Mahkovec Povalej T, Brunkard JO, Kmetic M, Jutersek M, Baebler Š, Gruden K. Chloroplast redox state changes mark cell-to-cell signaling in the hypersensitive response. New Phytol. 2023;237:548–562. doi:10.1111/nph.18425.
  • Riedel D, Lesemann DE, Maiss E. Ultrastructural localization of nonstructural and coat proteins of 19 potyviruses using antisera to bacterially expressed proteins of plum pox potyvirus. Arch Virol. 1998;143(11):2133–2158. doi:10.1007/s007050050448.
  • Sorel M, Garcia JA, German-Retana S. The potyviridae cylindrical inclusion helicase: a key multipartner and multifunctional protein. Mol Plant Microbe Interact. 2014;27(3):215–226. doi:10.1094/MPMI-11-13-0333-CR.
  • Revers F, Garcia JA. Molecular biology of potyviruses. Adv Virus Res. 2015;92:101–199.
  • Choi D, Park J, Oh S, Cheong H. Autophagy induction in tobacco leaves infected by potato virus Y(O) and its putative roles. Biochem Biophys Res Commun. 2016;474:606–611. doi:10.1016/j.bbrc.2016.03.104.
  • Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: autophagy induction, inhibition and selection. Autophagy. 2015;11(11):1956–1977. doi:10.1080/15548627.2015.1091141.
  • Ozgur R, Uzilday B, Iwata Y, Koizumi N, Turkan I. Interplay between the unfolded protein response and reactive oxygen species: a dynamic duo. J Exp Bot. 2018;69(14):3333–3345. doi:10.1093/jxb/ery040.
  • Ye C, Dickman MB, Whitham SA, Payton M, Verchot J. The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol. 2011;156(2):741–755. doi:10.1104/pp.111.174110.
  • Bao Y, Howell SH. The unfolded protein response supports plant development and defense as well as responses to abiotic stress. Front Plant Sci. 2017;8:344. doi:10.3389/fpls.2017.00344.
  • Pallas V, Garcia JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol. 2011;92(12):2691–2705. doi:10.1099/vir.0.034603-0.
  • Ghoshal B, Sanfacon H. Symptom recovery in virus-infected plants: revisiting the role of RNA silencing mechanisms. Virology. 2015;479:167–179. doi:10.1016/j.virol.2015.01.008.
  • Valli AA, Gallo A, Rodamilans B, Lopez-Moya JJ, Garcia JA. The HCPro from the potyviridae family: an enviable multitasking helper component that every virus would like to have. Mol Plant Pathol. 2018;19(3):744–763. doi:10.1111/mpp.12553.
  • Brederode FT, Linthorst HJ, Bol JF. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol. 1991;17(6):1117–1125. doi:10.1007/BF00028729.
  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B. Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie. 1993;75:687–706. doi:10.1016/0300-9084(93)90100-7.