2,030
Views
2
CrossRef citations to date
0
Altmetric
Research paper

Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize (Zea mays L.) hybrids grown under drought stress

, , , , , , , & ORCID Icon show all
Article: 2262795 | Received 24 Jul 2023, Accepted 17 Sep 2023, Published online: 28 Sep 2023

References

  • Alexandratos N, Bruinsma J World agriculture towards 2030/2050: the 2012 revision. 2012. Published online.
  • Dabravolski SA, Isayenkov SV. The regulation of plant cell wall organisation under salt stress. Front Plant Sci. 2023;14:1118313. doi:10.3389/fpls.2023.1118313.
  • Dev SM. Small farmers in India: challenges and opportunities. Indira Gandhi Inst Dev Res. 2012;8–13. Published online.
  • Kumar A, Sharma SK, Lata C, Devi R, Kulshrestha N, Krishnamurthy SL, SINGH K, YADAV RK. Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (Triticum aestivum) varieties. Indian J Agri Sci. 2018;88(10):1624–1632. doi:10.56093/ijas.v88i10.84255.
  • Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib Ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, et al. Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: an overview. Front Plant Sci. 2021;12:767150. doi:10.3389/fpls.2021.767150.
  • Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent advances in microbial-assisted remediation of cadmium-contaminated soil. Plants. 2023;12(17):3147. doi:10.3390/plants12173147.
  • Cheeseman J Food security in the face of salinity, drought, climate change, and population growth. In: Halophytes for Food Security in Dry Lands. Elsevier; 2016:111–123.
  • Ingrao C, Strippoli R, Lagioia G, Huisingh D. Water scarcity in agriculture: An overview of causes, impacts, and approaches for reducing the risks. Heliyon. 2023;9(8):18507. doi:10.1016/j.heliyon.2023.e18507.
  • Ma Y, Dias MC, Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci. 2020;11:11(November). doi:10.3389/fpls.2020.591911.
  • Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, et al. Nickel (Ni) phytotoxicity and detoxification mechanisms: a review. Chemosphere. 2023;328:138574. doi:10.1016/j.chemosphere.2023.138574. Published online 2023.
  • Hoegh-Guldberg O, Jacob D, Taylor M, Guillén Bolaños T, Bindi M, Brown S, Camilloni IA, Diedhiou A, Djalante R, Ebi K, et al. The human imperative of stabilizing global climate change at 1.5°C. Sci. 2019;365(6459):eaaw6974. doi:10.1126/science.aaw6974. (80-).
  • Bai Y, Xiao S, Zhang Z, Zhang Y, Sun H, Zhang K, Wang X, Bai Z, Li C, Liu L, et al. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ. 2020;8:e9450. doi:10.7717/peerj.9450.
  • Huang B, Chen YE, Zhao YQ, Ding CB, Liao JQ, Hu C, Zhou L-J, Zhang Z-W, Yuan S, Yuan M, et al. Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front Plant Sci. 2019;10:677. doi:10.3389/fpls.2019.00677.
  • Gao W, Zhang Y, Feng Z, Bai Q, He J, Wang Y. Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules. 2018;23(7):1580. doi:10.3390/molecules23071580.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Sustain Agric. 2009;153–188. Published online.
  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep. 2017;7(1):42039. doi:10.1038/srep42039.
  • Wani KI, Zehra A, Choudhary S, Naeem M, Khan MMA, Khan R, Khan R, Aftab T. Exogenous strigolactone (GR24) positively regulates growth, photosynthesis, and improves glandular trichome attributes for enhanced artemisinin production in Artemisia annua. J Plant Growth Regul. 2023;42(8):4606–4615. doi:10.1007/s00344-022-10654-w.
  • Nikolaeva MK, Maevskaya SN, Voronin PY. Photosynthetic CO 2/H 2 O gas exchange and dynamics of carbohydrates content in maize leaves under drought. Russ J Plant Physiol. 2017;64(4):536–542. doi:10.1134/S1021443717030116.
  • Wu S, Hu C, Tan Q, Xu S, Sun X. Nitric oxide mediates molybdenum-induced antioxidant defense in wheat under drought stress. Front Plant Sci. 2017;8:1085. doi:10.3389/fpls.2017.01085.
  • Zhou Y, Schideman LC, Park DS, Stirbet A, Rupassara SI, Krehbiel JD, Krehbiel JD, Seufferheld MJ. Characterization of a chlamydomonas reinhardtii mutant strain with improved biomass production under low light and mixotrophic conditions. Algal Res. 2015;11:134–147. doi:10.1016/j.algal.2015.06.001.
  • Turan S, Kumar S, Cornish K. Photosynthetic response of in vitro guayule plants in low and high lights and the role of non-photochemical quenching in plant acclimation. Ind Crops Prod. 2014;54:266–271. doi:10.1016/j.indcrop.2014.01.022.
  • Bhoi A, Yadu B, Chandra J, Keshavkant S. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta. 2021;254(2):1–21. doi:10.1007/s00425-021-03678-1.
  • Van HC, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA. 2014;111(2):851–856. doi:10.1073/pnas.1322135111.
  • Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F, et al. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume lotus japonicus. J Exp Bot. 2013;64(7):1967–1981. doi:10.1093/jxb/ert056.
  • Screpanti C, Fonné-Pfister R, Lumbroso A, Rendine S, Lachia M, De Mesmaeker A. Strigolactone derivatives for potential crop enhancement applications. Bioorg Med Chem Lett. 2016;26(10):2392–2400. doi:10.1016/j.bmcl.2016.03.072.
  • de Saint Germain A, Retailleau P, Norsikian S, Servajean V, Pelissier F, Steinmetz V, Pillot JP, Rochange S, Pouvreau J.B, Boyer FD. Contalactone, a contaminant formed during chemical synthesis of the strigolactone reference GR24 is also a strigolactone mimic. Phytochemistry. 2019;168:112112. doi:10.1016/j.phytochem.2019.112112.
  • Daryanto S, Wang L, Jacinthe PA, Hui D. Global synthesis of drought effects on maize and wheat production. PLoS One. 2016;11(5):e0156362. doi:10.1371/journal.pone.0156362.
  • Danish S, Zafar-Ul-Hye M, Fahad S, Saud S, Brtnicky M, Hammerschmiedt T, Datta R. Drought stress alleviation by ACC deaminase producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without timber waste biochar in maize. Sustainability. 2020;12(15):6286. doi:10.3390/su12156286.
  • Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 1949;24(1):1. doi:10.1104/pp.24.1.1.
  • Li G, Tian M, Shen R. Analysis of chlorophyll fluorescence parameters in leaves of strigolactone mutants of Arabidopsis thaliana. J Zhejiang A&F Univ. 2017;34:36–41.
  • Maqsood MF, Shahbaz M, Arfan M, Basra SMA. Presowing seed treatment with glycine betaine confers NaCl tolerance in quinoa by modulating some physiological processes and antioxidant machinery. Turk J Botany. 2021;45(1):1–14. doi:10.3906/bot-2009-13.
  • Giannopolitis CN, Ries SK. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol. 1977;59(2):315–318. doi:10.1104/pp.59.2.315.
  • Maqsood MF, Shahbaz M, Kanwal S, Kaleem M, Shah SMR, Luqman M, Iftikhar I, Zulfiqar U, Tariq A, Naveed SA, et al. Methionine promotes the growth and yield of wheat under water deficit conditions by regulating the antioxidant enzymes, reactive oxygen species, and ions. Life. 2022;12(7):969. doi:10.3390/life12070969.
  • Mukherjee SP, Choudhuri MA. Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant. 1983;58(2):166–170. doi:10.1111/j.1399-3054.1983.tb04162.x.
  • Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem. 1985;33(2):213–217. doi:10.1021/jf00062a013.
  • Grieve CM, Grattan SR. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 1983;70(2):303–307. doi:10.1007/BF02374789.
  • Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Short Commun. 1973;207:205–207. doi:10.1007/BF00018060.
  • Wang L, Wang B, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature. 2020;583(7815):277–281. doi:10.1038/s41586-020-2382-x.
  • Nian L, Zhang X, Liu X, Li X, Liu X, Yang Y, Haider FU, Zhu X, Ma B, Mao Z, et al. Characterization of B-box family genes and their expression profiles under abiotic stresses in the melilotus albus. Front Plant Sci. 2022;13:990929. doi:10.3389/fpls.2022.990929.
  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell. 2015;27(11):3143–3159. doi:10.1105/tpc.15.00562.
  • Yang T, Lian Y, Kang J, Bian Z, Xuan L, Gao Z, Wang X, Deng J, Wang C. The SUPPRESSOR of MAX2 1 (SMAX1)-like SMXL6, SMXL7 and SMXL8 act as negative regulators in response to drought stress in Arabidopsis. Plant Cell Physiol. 2020;61(8):1477–1492. doi:10.1093/pcp/pcaa066.
  • Xie Y, Liu Y, Ma M, Zhou Q, Zhao Y, Zhao B, Zhao B, Wang B, Wei H, Wang H. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nat Commun. 2020;11(1):1955. doi:10.1038/s41467-020-15893-7.
  • Li W, Herrera-Estrella L, Tran LSP. Do cytokinins and strigolactones Crosstalk during drought adaptation? Trends Plant Sci. 2019;24(8):669–672. doi:10.1016/j.tplants.2019.06.007.
  • Korek M, Marzec M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC Plant Biol. 2023;23(1):1–18. doi:10.1186/s12870-023-04332-6.
  • Wu F, Gao Y, Yang W, Sui N, Zhu J. Biological functions of strigolactones and their crosstalk with other phytohormones. Front Plant Sci. 2022;13(February). doi:10.3389/fpls.2022.821563.
  • Ma N, Hu C, Wan L, Hu Q, Xiong J, Zhang C. Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (brassica napus L.) by regulating gene expression. Front Plant Sci. 2017;8(September):1–15. doi:10.3389/fpls.2017.01671.
  • Naeem MS, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich EA, Xu L, Zhou W. 5-aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiol Biochem. 2012;57:84–92. doi:10.1016/j.plaphy.2012.05.018.
  • Sarwar Y, Shahbaz M. Modulation in growth, photosynthetic pigments, gas exchange attributes and inorganic ions in sunflower (Helianthus annuus L.) by strigolactones (GR24) achene priming under saline conditions. Pak J Bot. 2020;52(1):23–31. doi:10.30848/PJB2020-1(4).
  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA, et al. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants. 2022;11(13):1620. doi:10.3390/plants11131620.
  • Ling F, Su Q, Jiang H, Cui J, He X, Wu Z, Zhang Z, Liu J, Zhao Y. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci Rep. 2020;10(1):6183. doi:10.1038/s41598-020-63352-6.
  • Lu T, Meng Z, Zhang G, Qi M, Sun Z, Liu Y, Li T. Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front Plant Sci. 2017;8:365. doi:10.3389/fpls.2017.00365.
  • Lv S, Zhang Y, Li C, Liu Z, Yang N, Pan L, Wu J, Wang J, Yang J, Lv Y, et al. Strigolactone‐triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid‐independent manner. New Phytol. 2018;217(1):290–304. doi:10.1111/nph.14813.
  • Ashfaque F, Khan MIR, Khan NA. Exogenously applied H2O2 promotes proline accumulation, water relations, photosynthetic efficiency and growth of wheat (Triticum aestivum L.) under salt stress. Annu Res Rev Biol. 2014;4:105–120. doi:10.9734/ARRB/2014/5629. Published online 2014.
  • Faiz H, Ayyub CM, Khan RW, Ahmad R. Morphological, physiological and biochemical responses of eggplant (Solanum melongena L.) seedling to heat stress. J Agric Sci. 2020;57:371–380.
  • Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem. 2019;135:99–110. doi:10.1016/j.plaphy.2018.11.037.
  • Sattar A, Ul-Allah S, Ijaz M, Sher A, Butt M, Abbas T, Irfan M, Fatima T, Alfarraj S, Alharbi SA, et al. Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Res Commun. 2022;50(2):263–272. doi:10.1007/s42976-021-00171-z.
  • Sedaghat M, Tahmasebi-Sarvestani Z, Emam Y, Mokhtassi-Bidgoli A. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiol Biochem. 2017;119:59–69. doi:10.1016/j.plaphy.2017.08.015.
  • Tomar NS, Agarwal RM Influence of treatment of jatropha curcas L. leachates and potassium on growth and phytochemical constituents of wheat (Triticum aestivum L.). 2013. Published online.
  • Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO, Robles-Sánchez M, Astiazaran-García H, Alvarez-Parrilla E, González-Aguilar GA. Phenolic compounds: their journey after intake. Food Funct. 2014;5(2):189–197. doi:10.1039/C3FO60361J.
  • Shivakoti GP, Janssen MA, Chhetri NB. Agricultural and natural resources adaptations to climate change: governance challenges in Asia. Int J Commons. 2019;13(2):827–832. doi:10.5334/ijc.999.
  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B, et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules. 2019;9(7):285. doi:10.3390/biom9070285.
  • Iqbal N, Umar S, Khan NA, Khan MIR. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot. 2014;100:34–42. doi:10.1016/j.envexpbot.2013.12.006.
  • Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environ. 2017;40(1):4–10. doi:10.1111/pce.12800.
  • Zheng X, Li Y, Xi X, Ma C, Sun Z, Yang X, Li X, Tian Y, Wang C. Exogenous strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis rehd. Plant Physiol Biochem. 2021;159:113–122. doi:10.1016/j.plaphy.2020.12.015.
  • Shan C, Wang Y. Exogenous salicylic acid-induced nitric oxide regulates leaf water condition through root osmoregulation of maize seedlings under drought stress. Brazilian J Bot. 2017;40:591–597. doi:10.1007/s40415-016-0355-y.
  • Gupta N, Thind SK, Bains NS. Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regul. 2014;72(3):221–228. doi:10.1007/s10725-013-9853-0.
  • Yoneyama K, Xie X, Il KH, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta. 2012;235:1197–1207. doi:10.1007/s00425-011-1568-8.
  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G. Strigolactones are involved in phosphate-and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot. 2014;65(22):6735–6746. doi:10.1093/jxb/eru029.
  • Khan MS, Ahmad D, Khan MA. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol. 2015;18(4):257–266. doi:10.1016/j.ejbt.2015.04.002.
  • Liu X, Hu Q, Yan J, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, et al. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant. 2020;13(12):1784–1801. doi:10.1016/j.molp.2020.10.001.
  • Chesterfield RJ, Vickers CE, Beveridge CA. Translation of strigolactones from plant hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant Sci. 2020;25(11):1087–1106. doi:10.1016/j.tplants.2020.06.005.
  • Qiao Y, Lu W, Wang R, Nisa Z, Yu Y, Jin X, Yu L, Chen C. Identification and expression analysis of strigolactone biosynthetic and signaling genes in response to salt and alkaline stresses in soybean (glycine max). DNA Cell Biol. 2020;39(10):1850–1861. doi:10.1089/dna.2020.5637.
  • Zhang Y, Lv S, Wang G. Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal Behav. 2018;13(3):e1444322. doi:10.1080/15592324.2018.1444322.
  • Pandey DK, Gupta B, Pathak GC, Pandey N. Growth and metabolic effects of B deficiency in red kidney bean (Phaseolus vulgaris L. var. Kashmiri) grown in sand culture. Res Env Life Sci. 2009;2:131–135.
  • de Souza TC, de Castro EM, César Magalhães P, De Oliveira Lino L, Trindade Alves E, de Albuquerque PEP. Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiol Plant. 2013;35:3201–3211. doi:10.1007/s11738-013-1355-1.
  • Zwanenburg B, Mwakaboko AS. Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorg Med Chem. 2011;19(24):7394–7400. doi:10.1016/j.bmc.2011.10.057.
  • Saha D, Choyal P, Mishra UN, Dey P, Bose B, Prathibha MD, Gupta NK, Mehta BK, Kumar P, Pandey S, et al. Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress. 2022;4:100066. doi:10.1016/j.stress.2022.100066.