774
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Expression profiling of the phenylalanine ammonia-lyase (PAL) gene family in ginkgo biloba L.

, , , &
Article: 2271807 | Received 30 Jun 2023, Accepted 12 Oct 2023, Published online: 30 Oct 2023

References

  • Huang JL, Gu M, Lai ZHB, Fan BF, Shi K, Zhou YH, Yu JQ, Chen ZHX. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010;153(4):1526–11. doi:10.1104/pp.110.157370.
  • Chen X, Wang P, Gu M, Hou B, Zhang C, Zheng Y, Sun Y, Jin S, Ye N. Identification of PAL genes related to anthocyanin synthesis in tea plants and its correlation with anthocyanin content. Hortic Plant J. 2022;8(3):381–394. doi:10.1016/j.hpj.2021.12.005.
  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, et al. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell. 2004;16(10):2749–2771. doi:10.1105/tpc.104.023705.
  • Shao R, Zhang J, Shi W, Wang Y, Tang Y, Liu Z, Sun W, Wang H, Guo J, Meng Y, et al. Mercury stress tolerance in wheat and maize is achieved by lignin accumulation controlled by nitric oxide. Environ Pollut. 2022;307:119488. doi:10.1016/j.envpol.2022.119488.
  • Cochrane FC, Davin LB, Lewis NG. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry. 2004;65(11):1557–1564. doi:10.1016/j.phytochem.2004.05.006.
  • Mo F, Li L, Zhang C, Yang C, Chen G, Niu Y, Si J, Liu T, Sun X, Wang S, et al. Genome-wide analysis and expression profiling of the phenylalanine ammonia-lyase gene family in Solanum tuberosum. Int J Mol Sci. 2022;23(12):6833. doi:10.3390/ijms23126833.
  • Reichert AI, He X-Z, Dixon RA. Phenylalanine ammonia-lyase (PAL) from tobacco (nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J. 2009;424(2):233–242. doi:10.1042/BJ20090620.
  • Lister CE, Lancaster JE, Walker JRL. Phenylalanine ammonia-lyase (PAL) activity and its relationship to anthocyanin and flavonoid levels in New Zealand-grown apple cultivars. J Amer Soc Hort. 1996;121(2):281–285. doi:10.21273/JASHS.121.2.281.
  • Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol. 2008;165(14):1491–1499. doi:10.1016/j.jplph.2007.11.005.
  • Gho YS, Kim SJ, Jung KH. Phenylalanine ammonia-lyase family is closely associated with response to phosphate deficiency in rice. Genes Genomics. 2020;42(1):67–76. doi:10.1007/s13258-019-00879-7.
  • Feng Y, Huang Q, Zhang R, Li J, Luo K, Chen Y, Santalla M, Santalla, M. Molecular characterisation of PAL gene family reveals their role in abiotic stress response in lucerne (Medicago sativa). Crop & Pasture Science. 2022;73(3):300–311. doi:10.1071/cp21558.
  • Zhao T, Li R, Yao W, Wang Y, Zhang C, Li Y. Genome-wide identification and characterisation of phenylalanine ammonia-lyase gene family in grapevine. J Hortic Sci Biotech. 2021;96(4):456–468. doi:10.1080/14620316.2021.1879685.
  • Habibollahi M, Kavousi HR, Lohrasbi-Nejad A, Rahpeyma SA. Cloning, characterization and expression of a phenylalanine ammonia-lyase gene (CcPAL) from cumin (cuminum cyminum L.). J Appl Res Med Aromat Plants. 2020;18:100253. doi:10.1016/j.jarmap.2020.100253.
  • Chang A, Lim MH, Lee SW, Robb EJ, Nazar RN. Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized. J Biol Chem. 2008;283(48):33591–33601. doi:10.1074/jbc.M804428200.
  • Hamberger B, Ellis M, Friedmann M, De Azevedo Souza C, Barbazuk B, Douglas CJ. Genome-wide analyses of phenylpropanoid-related genes in populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the populus lignin toolbox and conservation and diversification of angiosperm gene familiesThis article is one of a selection of papers published in the special issue on poplar research in Canada. Can J Botany. 2007;85:1182–1201. doi:10.1139/b07-098.
  • Raes J, Rohde A, Christensen JH, Van De Peer Y, Boerjan W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 2003;133(3):1051–1071. doi:10.1104/pp.103.026484.
  • Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, et al. Draft genome of the living fossil ginkgo biloba. Gigascience. 2016;5(1):49. doi:10.1186/s13742-016-0154-1.
  • Liu H, Wang X, Wang G, Cui P, Wu S, Ai C, Hu N, Li A, He B, Shao X, et al. The nearly complete genome of ginkgo biloba illuminates gymnosperm evolution. Nature Plants. 2021;7(6):748–756. doi:10.1038/s41477-021-00933-x.
  • Cheng SY, Xu F, Wang Y. Advances in the study of flavonoids in ginkgo biloba leaves. J Med Plants Res. 2009;3:1248–1252.
  • Ye J, Yang K, Li Y, Xu F, Cheng S, Zhang W, Liao Y, Yang X, Wang L, Wang Q, et al. Genome-wide transcriptome analysis reveals the regulatory network governing terpene trilactones biosynthesis in ginkgo biloba. Tree Physiol. 2022;42:2068–2085. doi:10.1093/treephys/tpac051.
  • Du S, Sang Y, Liu X, Xing S, Li J, Tang H, Sun L. Transcriptome Profile analysis from different sex types of ginkgo biloba L. Front Plant Sci. 2016;7:871. doi:10.3389/fpls.2016.00871.
  • Jia Z, Zhao B, Liu S, Lu Z, Chang B, Jiang H, Cui H, He Q, Li W, Jin B, et al. Embryo transcriptome and miRNA analyses reveal the regulatory network of seed dormancy in ginkgo biloba. Tree Physiol. 2021;41(4):571–588. doi:10.1093/treephys/tpaa023.
  • Hu Y, Smarda P, Liu G, Wang B, Gao X, Guo Q. High-depth transcriptome reveals differences in natural haploid ginkgo biloba L. Due to the effect of reduced gene dosage. Int J Mol Sci. 2022;23(16):8958. doi:10.3390/ijms23168958.
  • Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–527. doi:10.1038/nbt.3519.
  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. Tbtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. Mol Plant. 2020;13(8):1194–1202. doi:10.1101/289660.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software Environment for Integrated Models of Biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303.
  • Fu F, Song C, Wen C, Yang L, Guo Y, Yang X, Shu Z, Li X, Feng Y, Liu B, et al. The Metasequoia genome and evolutionary relationships among redwoods. Plant Commun. 2023;100643. doi:10.1016/j.xplc.2023.100643.
  • Hu Y, Zhang Y, Smarda P, Bures P, Guo Q. Transcriptome and proteome associated analysis of flavonoid metabolism in haploid ginkgo biloba. Int J Biol Macromol. 2023;224:306–318. doi:10.1016/j.ijbiomac.2022.10.125.
  • Shen G, Pang Y, Wu W, Deng Z, Zhao L, Cao Y, Sun X, Tang K. Cloning and characterization of a flavanone 3-hydroxylase gene from ginkgo biloba. Biosci Rep. 2006;26(1):19–29. doi:10.1007/s10540-006-9007-y.
  • Xu F, Li L, Zhang W, Cheng H, Sun N, Cheng S, Wang Y. Isolation, characterization, and function analysis of a flavonol synthase gene from ginkgo biloba. Mol Biol Rep. 2011;39(3):2285–2296. doi:10.1007/s11033-011-0978-9.
  • Yang YH, Wang CJ, Li RF, Zhang ZY, Yang H, Chu CY, Li JT. Overexpression of RgPAL family genes involved in phenolic biosynthesis promotes the replanting disease development in Rehmannia glutinosa. J Plant Physiol. 2021;257:153339. doi:10.1016/j.jplph.2020.153339.
  • De Jong F, Hanley SJ, Beale MH, Karp A. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar. Phytochemistry. 2015;117:90–97. doi:10.1016/j.phytochem.2015.06.005.
  • Hsieh LS, Ma GJ, Yang CC, Lee PD. Cloning, expression, site-directed mutagenesis and immunolocalization of phenylalanine ammonia-lyase in Bambusa oldhamii. Phytochemistry. 2010;71(17–18):1999–2009. doi:10.1016/j.phytochem.2010.09.019.
  • Jiang H, Fu Y, Li C, Chen M, Gu Z, Shan Y, Tan X. Cadmium decreased superoxide anion derived from NADPH oxidase through overload of calcium in wheat seedling. Pak J Bot. 2020;52(5). doi:10.30848/PJB2020-5(15).
  • Yan F, Li H, Zhao P. Genome-wide Identification and transcriptional expression of the PAL gene family in common walnut (Juglans Regia L.). Genes (Basel). 2019;10(1):46. doi:10.3390/genes10010046.
  • Rawal HC, Singh NK, Sharma TR. Conservation, divergence, and genome-wide distribution of PAL and POX a gene families in plants. Int J Genomics. 2013;2013:678969. doi:10.1155/2013/678969.
  • Dong CJ, Shang QM. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus). Planta. 2013;238(1):35–49. doi:10.1007/s00425-013-1869-1.
  • Khakdan F, Alizadeh H, Ranjbar M. Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L. Plant Physiol Biochem. 2018;130:464–472. doi:10.1016/j.plaphy.2018.07.026.
  • Wanner LA, Li G, Ware D, Somssich IE, Davis AKR. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol. 1995;27(2):327–338. doi:10.1007/BF00020187.
  • Zhu Q, Xie X, Lin H, Sui S, Shen R, Yang Z, Lu K, Li M, Liu YG. Isolation and functional characterization of a phenylalanine ammonia-lyase gene (SsPAL1) from coleus (Solenostemon scutellarioides (L.) Codd). Molecules. 2015;20(9):16833–16851. doi:10.3390/molecules200916833.
  • Gao J, Zhang S, Cai F, Zheng X, Lin N, Qin X, Ou Y, Gu X, Zhu X, Xu Y, et al. Characterization, and expression profile of a phenylalanine ammonia lyase gene from jatropha curcas L. Mol Biol Rep. 2012;39(4):3443–3452. doi:10.1007/s11033-011-1116-4.
  • Zhou T, Yang X, Fu F, Wang G, Cao F. Selection of suitable reference genes Based on transcriptomic data in ginkgo biloba under different experimental conditions. Forests. 2020;11(11):11. doi:10.3390/f11111217.