524
Views
0
CrossRef citations to date
0
Altmetric
Short communication

Microtubule-associated proteins WDL5 and WDL6 play a critical role in pollen tube growth in Arabidopsis thaliana

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2281159 | Received 01 Sep 2023, Accepted 06 Nov 2023, Published online: 15 Nov 2023

References

  • Kost B, Chua NH. The plant cytoskeleton: vacuoles and cell walls make the difference. Cell. 2002 Jan 11;108(1):9–4. doi:10.1016/s0092-8674(01)00634-1.
  • Yuen CY, Pearlman RS, Silo-Suh L, Hilson P, Carroll KL, Masson PH. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol. 2003 Feb;131(2):493–506. doi:10.1104/pp.015966.
  • Perrin RM, Wang Y, Yuen CY, Will J, Masson PH. WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant Journal. 2007 Mar;49(6):961–971. doi:10.1111/j.1365-313X.2006.03015.x.
  • Sun J, Ma Q, Mao T. Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAMPENED2-LIKE5 in etiolated hypocotyl elongation. Plant Physiol. 2015 Sep;169(1):325–337. doi:10.1104/pp.15.00609.
  • Ma Q, Sun J, Mao T. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls. J Cell Sci. 2016 May 15;129(10):2043–2051. doi:10.1242/jcs.184408.
  • Dou L, He K, Higaki T, Wang X, Mao T. Ethylene signaling modulates cortical microtubule reassembly in response to salt stress. Plant Physiol. 2018 Mar;176(3):2071–2081. doi:10.1104/pp.17.01124.
  • Wang X, Zhang J, Yuan M, Ehrhardt DW, Wang Z, Mao T. Arabidopsis MICROTUBULE DESTABILIZING PROTEIN40 is involved in brassinosteroid regulation of hypocotyl elongation. Plant Cell. 2012 Oct;24(10):4012–4025. doi:10.1105/tpc.112.103838.
  • Liu X, Qin T, Ma Q, Sun J, Liu Z, Yuan M, Mao T. Light-regulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis. Plant Cell. 2013 May;25(5):1740–1755. doi:10.1105/tpc.113.112789.
  • Lian N, Liu X, Wang X, Zhou Y, Li H, Li J, Mao T. COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation. Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12321–12326. doi:10.1073/pnas.1708087114.
  • Ma Q, Wang X, Sun J, Mao T. Coordinated regulation of hypocotyl Cell elongation by light and ethylene through a microtubule destabilizing protein. Plant Physiol. 2018 Jan;176(1):678–690. doi:10.1104/pp.17.01109.
  • Schaefer K, Cairo Baza A, Huang T, Cioffi T, Elliott A, Shaw SL. WAVE-DAMPENED2-LIKE4 modulates the hyper-elongation of light-grown hypocotyl cells. Plant Physiol. 2023 Aug 3;192(4):2687–2702. doi:10.1093/plphys/kiad248.
  • Deng J, Wang X, Liu Z, Mao T. The microtubule-associated protein WDL4 modulates auxin distribution to promote apical hook opening in Arabidopsis. Plant Cell. 2021 Jul 19;33(6):1927–1944. doi:10.1093/plcell/koab080.
  • Dou L, He K, Peng J, Wang X, Mao T. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA. Nat Commun. 2021 Apr 12;12(1):2181. doi:10.1038/s41467-021-22455-y.
  • Okamoto T, Tsurumi S, Shibasaki K, Obana Y, Takaji H, Oono Y, Rahman A. Genetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance. Plant Physiol. 2008 Apr;146(4):1651–1662. doi:10.1104/pp.107.115519.
  • Okamoto T, Takatani S, Motose H, Iida H, Takahashi T. The root growth reduction in response to mechanical stress involves ethylene-mediated microtubule reorganization and transmembrane receptor-mediated signal transduction in Arabidopsis. Plant Cell Rep. 2021 Mar;40(3):575–582. doi:10.1007/s00299-020-02653-6.
  • Smertenko A, Clare SJ, Effertz K, Parish A, Ross A, Schmidt S, Murray J. A guide to plant TPX2-like and WAVE-DAMPENED2-like proteins. J Exp Bot. 2021 Feb 24;72(4):1034–1045. doi:10.1093/jxb/eraa513.
  • Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG, Grant-Downton RT. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol. 2013 Jan;197(2):668–679. doi:10.1111/nph.12037.
  • Gossot O, Geitmann A. Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta. 2007 Jul;226(2):405–416. doi:10.1007/s00425-007-0491-5.
  • Cheung AY, Duan QH, Costa SS, de Graaf BH, Di Stilio VS, Feijo J, Wu HM. The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant. 2008 Jul;1(4):686–702. doi:10.1093/mp/ssn026.
  • Fu Y. The cytoskeleton in the pollen tube. Curr Opin Plant Biol. 2015 Dec;28:111–119. doi:10.1016/j.pbi.2015.10.004.
  • Cai G. The legacy of kinesins in the pollen tube 30 years later. Cytoskeleton (Hoboken). 2022 Jan;79(1–3):8–19. doi:10.1002/cm.21713.
  • Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L. Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot. 2010 Apr;61(7):1969–1986. doi:10.1093/jxb/erq012.
  • Qu X, Jiang Y, Chang M, Liu X, Zhang R, Huang S. Organization and regulation of the actin cytoskeleton in the pollen tube. Front Plant Sci. 2015 Jan 8;5:786. doi:10.3389/fpls.2014.00786.
  • Xu Y, Huang S. Control of the actin cytoskeleton within apical and subapical regions of pollen tubes. Front Cell Dev Biol. 2020 Dec 3;8:614821. doi:10.3389/fcell.2020.614821.
  • Cai G, Faleri C, Del Casino C, Emons AM, Cresti M. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol. 2011 Mar;155(3):1169–1190. doi:10.1104/pp.110.171371.
  • Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. Front Plant Sci. 2015 Feb 10;6:51. doi:10.3389/fpls.2015.00051.
  • Parrotta L, Faleri C, Del Casino C, Mareri L, Aloisi I, Guerriero G, Hausman JF, Del Duca S, Cai G. Biochemical and cytological interactions between callose synthase and microtubules in the tobacco pollen tube. Plant Cell Rep. 2022 May;41(5):1301–1318. doi:10.1007/s00299-022-02860-3.