562
Views
0
CrossRef citations to date
0
Altmetric
Research paper

MWCNTs Alleviated saline-alkali stress by optimizing photosynthesis and sucrose metabolism in rice seedling

, , , , , & show all
Article: 2283357 | Received 16 Sep 2023, Accepted 26 Oct 2023, Published online: 06 Dec 2023

References

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder JI. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014;19(6):371–13. doi:10.1016/j.tplants.2014.02.001.
  • Liu HT, Wang X, Liu L, Gao YH, Mu DP, Chen YD. Effects of carboxylated multi-walled carbon nanotubes, mixed salt, and their combination on physiological characteristics of Oryza sativa seedlings. Plant Sci J. 2019;37(4):540–550. doi:10.11913/PSJ.2095-0837.2019.40540.
  • Hu T, Zhang GX, Zheng FC, Cao Y. Research progress in plant salt stress response. Mol Plant Breed. 2018;16(9):3006–3015. doi:10.13271/j.mpb.016.003006.
  • Li XB, Li HS, Zhang ZM, Chen GK. Research progress on salt-stress in rice. Guangdong Agric Sci. 2014;41(12):6–11. doi:10.16768/j.issn.1004-874x.2014.12.019.
  • Torney F, Trewyn BG, Lin VSY, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol. 2007;2(5):295–300. doi:10.1038/nnano.2007.108.
  • Xue QQ, Han BB, Wu XQ, Li P, Li YY, Wu QY. Application and prospective of nanomaterials in crop research. Curr Biotechnol. 2020;10(6):655–660. doi:10.19586/j.2095-2341.2020.0118.
  • Peng YQ, Chen LL, Zhu L, Cui LJ, Yang L, Wu HH, Bie ZL. CsAKT1is a key gene for CeO2 nanoparticles improved cucumber salt tolerance: a validation from CRISPR-Cas9 lines. Environ Sci: Nano. 2022;9(12):4367–81. doi:10.21203/rs.3.rs-1734803/v1.
  • Zhu L, Chen L, Gu J, Ma H, Wu H. Carbon-Based nanomaterials for sustainable agriculture: their application as light converters, nanosensors, and delivery tools. Plants. 2022;11(4):511. doi:10.3390/plants11040511.
  • Chen LL, Peng YQ, Zhu L, Huang Y, Bie ZL, Wu HH. CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. Chemosphere. 2022;299:299. doi:10.1016/j.chemosphere.2022.134474.
  • Wu HH, Li ZH. Nano-enabled agriculture: How do nanoparticles cross barriers in plants? Plant Commun. 2022;3(6):100346. doi:10.1016/j.xplc.2022.100346.
  • Li ZQ, Zhu L, Zhao FM, Li JQ, Zhang X, Kong XJ, Wu HH, Zhang ZY. Plant salinity stress response and nano-enabled plant salt tolerance. Front Plant Sci. 2022;13:843994. doi:10.3389/fpls.2022.843994.
  • Raj SN, Anooj ES, Rajendran K, Vallinayagam S. A comprehensive review on regulatory invention of nano pesticides in Agricultural nano formulation and food system. J Mol Struct. 2021;1239(2):130517. doi:10.1016/j.molstruc.2021.130517.
  • Kazemi S, Pourmadadi M, Yazdian F, Ghadami A. The synthesis and characterization of targeted delivery curcumin using chitosan-magnetite-reduced graphene oxide as nano-carrier. Int J Biol Macromol. 2021;1(186):554–562. doi:10.1016/j.ijbiomac.2021.06.184.
  • Liu JH, Li GJ, Chen LL, Gu JJ, Li ZH. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. J Nanobiotechnology. 2021;19(1):153. doi:10.1186/s12951-021-00892-7.
  • Wu H, Tito N, Giraldo JP. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. Acs Nano. 2017;11(11):11283–11297. doi:10.1021/acsnano.7b05723.
  • Volder MD, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Sci. 2013;339(6119):535–539. doi:10.1126/science.1222453.
  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. Acs Nano. 2012;6(8):3221–3227. doi:10.1021/nn302965w.
  • Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (zea mays) and implications for nanoagriculture. Appl Nanosci. 2014;4(5):577–591. doi:10.1007/s13204-013-0236-7.
  • Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon. 2015;81:607–619. doi:10.1016/j.carbon.2014.09.095.
  • Nguyen DV, Nguyen HM, Le NT, Nguyen KH, Ha CV. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. J Plant Growth Regul. 2021. doi:10.1007/s00344-021-10301-w.
  • Raliya R, Biswas P, Tarafdar JC. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Reports. 2015;5:22–26. doi:10.1016/j.btre.2014.10.009.
  • Cao C, Huang J, Wang N, Yan CN, Peng C. Impact of zinc oxide nanoparticles on seed germination of wetland plant. J Southeast Univ (Nat Sci Ed). 2017;47(2):5. doi:10.3969/j.issn.1001-0505.2017.02.035.
  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo MX, Ambikapathi R, Lee EH, Olszyk D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Enviro Toxic Chem. 2008;27(9):1922–1931. doi:10.1897/08-117.1.
  • Li J, Wu F, Fang Q, Wu Z, Duan QY, Li XD, Ye WL. The mutual effects of graphene oxide nanosheets and cadmium on the growth,cadmium uptake and accumulation in rice. Plant Physiol Bioch. 2020;147:289–294. doi:10.1016/j.plaphy.2019.12.034.
  • Zheng L, Hong FS, Lu SP, Liu C. Effect of Nano-TiO2 on strength of naturally aged seeds and growth of spinach. BTER. 2005;104(1):083–092. doi:10.1385/BTER:104:1:083.
  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 2013;9(1):115–123. doi:10.1002/smll.201201225.
  • Dey A, Basu R, Das S, Nandy P. Beneficial role of carbon nanotubes on mustard plant growth: An agricultural prospect. J Nanopart Res. 2011;13(10):4519–4528. doi:10.1007/s11051-011-0406-z.
  • Chen MJ, Yu F, Hu LJ, Sun LF. Recent progresses on the new condensed forms of single-walled carbon nanotubes and energy-harvesting devices. Chin Sci Bull. 2012;57(2–3):181–186. doi:10.1007/s11434-011-4818-z.
  • Wang F, Zhao JB, Gong JM, Wem LL, Zhou L. New Multifunctional Porous materials Based on Inorganic–organic Hybrid single-walled carbon nanotubes: gas storage and high-sensitive detection of pesticides. Chem A Eur J. 2012;18(37):11804–11810. doi:10.1002/chem.201200383.
  • Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Mehmet Lütfi Yola ML, Gupta VK, Ensafi AA. A novel DNA biosensor Based on a pencil graphite electrode modified with Polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res. 2015;54(14):3634–3639. doi:10.1021/ie504438z.
  • Begum P, Ikhtiari R, Fugetsu B. Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomater Basel. 2014;4(2):203–221. doi:10.3390/nano4020203.
  • Marrakchi M, Helali S, Camino JS, Soto J, Miguel C, Gonzalez-Martinez A, Abdelghani A, Hamdi M. Improvement of a pesticide immunosensor performance using site-directed antibody immobilisation and carbon nanotubes. Int J Nanotechnol. 2013;10(5–6–7):496–507. doi:10.1504/ijnt.2013.053519.
  • Zheng X, Su YL, Chen Y, Li M, Huang H. The effects of carbon nanotubes on nitrogen and phosphorus removal from real wastewater in the activated sludge system. RSC Adv. 2014;4(86):45953–45959. doi:10.1039/c4ra04128c.
  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant Sci. 2010;179(3):154–163. doi:10.1016/j.plantsci.2010.04.012.
  • Sanjiv S, Sung-Hoon A, Versha K. Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric. 2012;4(1):8–18. doi:10.2174/1876142911204010008.
  • Liu HT, Wang X, Liu L, Gao YH, Mu DP, Chen YD. Effects of carboxylated multi-walled carbon nanotubes, mixed salt, and their combination on physiological characteristics of Oryza sativa seedlings. Plant Sci J. 2019;37(4):540–550. doi:10.11913/PSJ.2095-0837.2019.40540.
  • Liu L, Dai HF, Tang FX, Zhang J, Xu TT, Liu HY. Responses of growth and physiology of rice (Oryza sativa L.) seedling roots to MWCNTs-COOH combined with cd stress. Chinese J Ecol. 2020;39(1):252–259. doi:10.13292/j.1000-4890.202001.006.
  • Yoshida S, Forno DA, Cook JH, Gomez KA. Laboratory manual for physiological studies of rice. Los Banos, Philippines: International Rice Research Institute; 1976.
  • Dong L, Li L, Meng Y, Liu H, Li J, Yu Y, Qian C, Wei S, Gu W. Exogenous Spermidine Optimizes Nitrogen Metabolism and Improves Maize Yield under Drought Stress Conditions. Agriculture. 2022;12(8):1270. doi:10.3390/agriculture12081270.
  • Wang H, Cao LY, Guo YH, Cheng SH. Correlation analysis and QTL mapping of some physiological traits related to drought resistance in rice. Chinese Jof Rice Sci. 2008;22(5):477–484. doi:10.16819/j.1001-7216.2008.05.006.
  • Wang WC Relationship between rice water status and heat resistance and its mechanisms [ Doctor’s Thesis]. Wuhan, China: Huazhong Agricultural University; 2021.
  • Trubat R, Cortina J, Vilagrosa A. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings. Oecologia. 2012;170(4):899–908. doi:10.1007/s00442-012-2380-2.
  • Hang YL The mechanism and effects of controlled root-divided alternative irrigation on nutrient uptake of maize [ Master’s Thesis]. Yangling, China: Northwest University of Agriculture and Forestry Technology; 2001.
  • Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T. Alterations in photosynthesis and some antioxidant enzymatic activities of mung bean subjected to waterlogging. Plant Sci. 2002;163(1):117–123. doi:10.1016/S0168-9452(02)00080-8.
  • Cui LN, Gao RQ, Sun AQ, Dong ST, Zhang HY. Regularity of carotenoids and anthocyanins accumulation in various genotypes of maize kernel. Acta Agron Sin. 2010;36(5):818–825. doi:10.3724/SP.J.1006.2010.00818.
  • Cheng LL. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves. J Exp Bot. 2003;54(381):385–393. doi:10.1093/jxb/erg011.
  • Sayre RT, Kennedy RA. Photosynthetic enzyme activities and localization in Mollugo verticillata populations differing in the levels of C3 and C4 cycle operation. Plant Physiol. 1979;64(2):293–299. doi:10.1104/pp.64.2.293.
  • Gobu R, Dash GK, Lal JP, Swain P, Mahender A, Anandan A, Ali J. Unlocking the nexus between leaf-level water use efficiency and root traits together with gas exchange measurements in rice (Oryza sativa L.). Plants. 2022;11(9):1270. doi:10.3390/plants11091270.
  • Wei Y, Liu S, Xiong D, Xiong Z, Zhang Z, Wang F, Huang J. Genome-wide association study for non-photochemical quenching traits in Oryza sativa L. Agronomy. 2022;12(12):3216. doi:10.3390/agronomy12123216.
  • Li LJ Mitigation Effect and Regulation Mechanism of Exogenous Spermidine (Spd) on Maize under Drought Stress [ Doctor’s Thesis]. Harbin, China: Northeast Agricultural University; 2019.
  • Sun Y, Sun Y, Yan F, Li Y, Wu Y, Guo C, Ma P, Yang G, Yang Z, Ma J. Coordinating postanthesis carbon and nitrogen metabolism of hybrid rice through different irrigation and nitrogen regimes. Agronomy. 2020;10(8):1187. doi:10.3390/agronomy10081187.
  • Peng L, Chen G, Tu Y, Wang J, Lan Y, Hu M, Li C, He X, Li T. Effects of phosphorus application rate on lipid synthesis and eating quality of two rice grains. Agriculture. 2022;12(5):667. doi:10.3390/agriculture12050667.
  • Meng Y Mitigation Effect and Physiological and Ecological Regulation Mechanism of Exogenous Hemin on Maize Seedling under Cadmium Stress and Field Validation Research [ Doctor’s Thesis]. Harbin, China: Northeast Agricultural University; 2020.
  • Kane NA, Danyluk J, Tardif G, Ouellet F, Jean-François Laliberté JF, Limin AE, Fowler DB, Sarhan F. TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol. 2005;138(4):2354–2363. doi:10.1104/pp.105.061762.
  • Liu LJ, Cang J, Yu J, Wang X, Huang R, Wang JF, Lu BW. Effects of exogenous abscisic acid on carbohydrate metabolism and the expression levels of correlative key enzymes in winter wheat under low temperature. Biosci Biotechnol Biochem. 2013;77(3):516–525. doi:10.1271/bbb.120752.
  • Demmig-Adams B, Adams BB. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Phys. 1992;43(1):599–626. doi:10.1146/annurev.pp.43.060192.003123.
  • Liu JX, Wang X, Li BP. Effects of exogenous nitric oxide donor on photosynthesis and xanthophyll cycle of peganum multisectum seedlings under NaCl stress. J Desert Res. 2011;31:137–141.
  • Tsuda T, Watanabe M, Ohshima K, Norinobu S, Choi SW, Ka-Wakishi S, Osawa T. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-.Beta.-D-Glucoside and cyanidin. J Agr Food Chem. 1994;42(11):2407–2410. doi:10.1021/jf00047a009.
  • Attaran E, Major IT, Cruz JA, Rosa BA, Koo AJK, Chen J, Kramer DM, He SY, Howe SY. G.A. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol. 2014;165(3):1302–1314. doi:10.1104/pp.114.239004.
  • Monica RC, Cremonini R. Nanoparticles and higher plants. Caryologia, Caryologia Firenze. 2009;62(2):161–165. doi:10.1080/00087114.2004.10589681.
  • Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, Giacca M, Turco A, Prato M, Ballerini L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett. 2012;12(4):1831–1838. doi:10.1021/nl204064s.
  • Ken D, Robert A, Lang T, Vicki S, Rodger D, Gavin F, Andrew A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci Off J Soci Toxicol. 2006;92(1):5–22. doi:10.1093/toxsci/kfj130.
  • Arnab M, Sanghamitra M, Servin AD, Luca P, Parkash DO, White JC. Carbon nanomaterials in agriculture: a critical review. Front Plant Sci. 2016;7:770. doi:10.3389/fpls.2016.00172.
  • Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon. 2011;49(12):3907–3919. doi:10.1016/j.carbon.2011.05.029.
  • Wang XP, Han HY, Liu XQ, Gu XX, Chen K, Lu DG. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res. 2012;14(6):841–850. doi:10.1007/s11051-012-0841-5.
  • Khodakovskaya MV, Kim BS, Kim JN, Nam J, Mohammad K, Enkeleda A, Thikra D, Carl M, Cernigla E. Carbon nanotubes as plant growth regulators: effects on tomato growth, Reproductive system, and soil microbial community. Small. 2012;9(1):115–123. doi:10.1002/smll.201201225.
  • Jiang YM, Liu Q, Zhao YQ, Liu QD, Wang F, Hua ZT. Effects of carbon nanotubes on seed germination and root growth of rice. Hubei Agric Sci. 2014;5:1010–1012. doi:10.3969/j.issn.0439-8114.2014.05.005.
  • Li Q, Hu R, Chen Z, Chen L, Zhang J, Wu X, Li JB, Gao Y, Yang ST, Wang H. Phytotoxicity of VO2 nanoparticles with different sizes to pea seedlings. Ecotox Environ Safe. 2022;242:113885. doi:10.1016/j.ecoenv.2022.113885.
  • Khodakovskaya MV, De SK, Biris AS, Dervishi E, Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells. Acs Nano. 2012;6(3):2128–2135. doi:10.1021/nn204643g.
  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo MX, Ambikapathi R, Lee EH, Olszyk D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem. 2008;27(9):1922–1931. doi:10.1897/08-117.1.
  • Cao JL, Feng YZ, Lin XG. Review of researches on influences of engineered nanomaterials on plant microorganisms. Acta Pedologica Sin. 2016;53(1):1–11. doi:10.11766/trxb201506110191.
  • Cao ZM, Stowers C, Rossi L, Zhang W, Lombardini L, Ma XM. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (glycine max (L.) Merr.). Environ Sci: Nano. 2017;4(5):1086–1094. doi:10.1039/c7en00015d.
  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, et al. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem. 2017;110:118–127. doi:10.1016/j.plaphy.2016.09.004.
  • Lu XH, Sun DQ, Zhang XM, Hu HG, Kong LX, Rookes JE, Xie JG, Cahill DM. Stimulation of photosynthesis and enhancement of growth and yield in phyllanthus thaliana treated with amine-functionalized mesoporous silica nanoparticles. Plant Physiol Bioch. 2020;156:566–577. doi:10.1016/j.plaphy.2020.09.036.
  • Siddiqui MH, Whaib IMHA, Faisal M, Sahli AAA. Nano‐silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Enviro Toxic Chem. 2015;33(11):2429–2437. doi:10.1002/etc.2697.
  • Malik WA, Mahmood I, Razzaq A, Afzal M, Shah GA, Iqbal A, Zain M, Ditta A, Asad SA, Ahmad I, et al. Exploring potential of copper and silver nano particles to establish efficient callogenesis and regeneration system for wheat (Triticum aestivum L.). GM Crops & Food. 2021;12(1):564–585. doi:10.1080/21645698.2021.1917975.
  • Costa MVJ, Sharma PK. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54(1):110–119. doi:10.1007/s11099-015-0167-5.
  • Nasrollahzadeh M, Sajjadi M, Dadashi J. Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv Colloid Interface Sci. 2020;276:102103. doi:10.1016/j.cis.2020.102103.
  • Landa P. Positive effects of metallic nanoparticles on plants: overview of involved mechanisms. Plant Physiol Bioch. 2021;161(3):12–24. doi:10.1016/j.plaphy.2021.01.039.
  • Siddiqui MH, Al-Whaibi MH, Mohammad F. Nanotechnology and plant Sciences || plant-Based synthesis of silver nanoparticles and their characterization. 2015. pp. 271–288. 10.1007/978-3-319-14502-0 (Chapter 13). doi:10.1007/978-3-319-14502-0_13.
  • Tripathi S, Sarkar S. Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci. 2015;5(5):609–616. doi:10.1007/s13204-014-0355-9.
  • Tiwari DK, Dasgupta-Schubert N, Cendejas LMV, Villegas J, Montoya LC, García SEB. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (zea mays) and implications for nanoagriculture. Appl Nanosci. 2014;4(5):577–591. doi:10.1007/s13204-013-0236-7.
  • Villagarcia H, Dervishi E, Silva KD, Biris AS, Khodakovskaya MV. Bioresponse to nanotubes: surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small. 2012;8(15):2328–2334. doi:10.1002/smll.201290081.
  • Wang JQ Effects of nano-carbon on growth and nutrient absorption of maize [ Master’s thesis]. Harbin: Northeast Agricultural University; 2013.
  • Li H, Huang J, Lu F, Liu Y, Song YX, Sun YH, Zhong J, Huang H, Wang Y, Li SM, et al. Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater. 2018;1(3):663–672. doi:10.1021/acsabm.8b00345.
  • Wang JQ, Liu Y, Li CG, Zhang SB, Sun SE, Zhang DY. Application of nanomaterials and related products on rice. Hybrid Rice. 2018;33(3):1–4, 15. doi:10.16267/j.cnki.1005-3956.20180326.092.
  • Gui X Bio-effects and mechanisms of several nano-oxide materials [ Doctor’s thesis]. Beijing: China Agricultural University; 2016.
  • Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, Fang XH. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009;9(3):1007–1010. doi:10.1021/nl803083u.
  • Tan XM, Fugetsu B. Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol. 2007;3(3):285–288. doi:10.1166/jbn.2007.035.
  • Tan XM, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon. 2009;47(15):3479–3487. doi:10.1016/j.carbon.2009.08.018.
  • Lin SJ, Reppert J, Hu Q, Hudson JAS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009;5(10):1128–1132. doi:10.1002/smll.200801556.
  • Canas JE, Long MQ, Nations S, Lenore RV. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Enviro Toxic Chem. 2008;27(9):1922–1931. doi:10.1897/08-117.1.
  • Shen CX, Zhang QF, Li F, Bi FC, Yao N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot. 2010;97(10):1602–1609. doi:10.3732/ajb.1000073.
  • Lin C, Fugetsu B, Su YB, Watari F. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater. 2009;170(2–3):578–583. doi:10.1016/j.jhazmat.2009.05.025.
  • Khodakovskaya MV, Silva KD, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA. 2010;108(3):1028–1033. doi:10.1073/pnas.1008856108.
  • García-Sánchez S, Bernales I, Cristobal S. Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genom. 2015;16(1):341. doi:10.1186/s12864-015-1530-4.
  • Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res. 2006;110(2):179–190. doi:10.1385/bter:110:2:179.
  • Yang F, Liu C, Gao FQ, Su MY, Wu X, Zheng L, Hong FS, Yang P. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res. 2007;119(1):77–88. doi:10.1007/s12011-007-0046-4.
  • Tna B, Rdc D, Nn E, Grf G, Ec H, Ac I, Zr J, Ibb K. Titanium dioxide nanoparticles provoke transient increase in photosynthetic performance and differential response in antioxidant system in Raphanus sativus L. Sci Hortic (Amsterdam). 2020;269:109418. doi:10.1016/j.scienta.2020.109418.
  • Zhang YD, Liu N, Wang W, Sun JT, Zhu LZ. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front Environ Sci Eng. 2020;14(6):103. doi:10.1007/s11783-020-1282-5.
  • Zhao ZJ, Liang TB, Chen QS, Hu LW, Zhang YL, Yin QS. The growth and development of plants regulated by carbon nano-materials. Crops. 2017;2:7–13. doi:10.16035/j.issn.1001-7283.2017.02.002.