681
Views
0
CrossRef citations to date
0
Altmetric
Technical Report

Cold acclimation alleviates photosynthetic inhibition and oxidative damage induced by cold stress in citrus seedlings

, , , , , & show all
Article: 2285169 | Received 17 Sep 2023, Accepted 11 Nov 2023, Published online: 28 Nov 2023

References

  • Zhou J, Wang J, Shi K, Xia XJ, Zhou YH, Yu JQ. Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol Bioch. 2012;60:141–12. doi:10.1016/j.plaphy.2012.07.010.
  • Petruccelli R, Bartolini G, Ganino T, Zelasco S, Lombardo L, Perri E, Durante M, Bernardi R. Cold Stress, Freezing Adaptation, Varietal Susceptibility of Olea europaea L.: A Review. Plants. 2022;11(10):1367. doi:10.3390/plants11101367.
  • Wei Y, Chen H, Wang L, Zhao Q, Wang D, Zhang T. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signal Behav. 2022;17:2013638. doi:10.1080/15592324.2021.2013638.
  • Gao Y, Thiele W, Saleh O, Scossa F, Arabi F, Zhang H, Sampathkumar A, Kühn K, Fernie A, Bock R, et al. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. Plant Cell. 2022;34(5):2056–2079. doi:10.1093/plcell/koac056.
  • Gusain S, Joshi S, Joshi R. Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. Plant Physiol. 2023;197(197):107646. doi:10.1016/j.plaphy.2023.107646.
  • Kitashova A, Schneider K, Fürtauer L, Schröder L, Scheibenbogen T, Fürtauer S, Nägele T. Impaired chloroplast positioning affects photosynthetic capacity and regulation of the central carbohydrate metabolism during cold acclimation. Photosynth Res. 2021;147(1):49–60. doi:10.1007/s11120-020-00795-y.
  • Gu L, Han J, Wood JD, Chang CYY, Sun Y. Sun‐induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol. 2019;223(3):1179–1191. doi:10.1111/nph.15796.
  • Wang H, Li Z, Yuan L, Zhou H, Hou X, Liu T. Cold acclimation can specifically inhibit chlorophyll biosynthesis in young leaves of Pakchoi. BMC Plant Biol. 2021;21(1):172. doi:10.1186/s12870-021-02954-2.
  • Zhao Y, Han Q, Ding C, Huang Y, Liao J, Chen T, Feng S, Zhou L, Zhang Z, Chen Y, et al. Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. Intel J Mol Sci. 2020;21(4):1390. doi:10.3390/ijms21041390.
  • Galmés J, Aranjuelo I, Medrano H, Flexas J. Variation in Rubisco content and activity under variable climatic factors. Photosynth Res. 2013;117(1–3):73–90. doi:10.1007/s11120-013-9861-y.
  • Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant, Cell & Environ. 2006;29(8):1659–1670. doi:10.1111/j.1365-3040.2006.01550.x.
  • Bascuñán-Godoy L, Sanhueza C, Cuba M, Zuñiga GE, Corcuera LJ, Bravo LA. SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis. BMC Plant Biol. 2012;12:1–15. doi:10.1186/1471-2229-12-1.
  • Allen DJ, Ort DR. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 2001;6(1):36–42. doi:10.1016/S1360-1385(00)01808-2.
  • Savitch LV, Barker-Åstrom J, Ivanov AG, Hurry V, Öquist G, Huner NP, Gardeström P. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Planta. 2001;214(2):295–303. doi:10.1007/s004250100622.
  • Soualiou S, Duan F, Li X, Zhou W. Crop production under cold stress: an understanding of plant responses, acclimation processes, and management strategies. Plant Physiol. 2022;190(190):47–61. doi:10.1016/j.plaphy.2022.08.024.
  • Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J Exp Bot. 2000;51(345):659–668. doi:10.1093/jexbot/51.345.659.
  • Guidi L, Lo Piccolo E, Landi M. Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front Plant Sci. 2019;10:174. doi:10.3389/fpls.2019.00174.
  • Pérez-Bueno ML, Pineda M, Barón M. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front Plant Sci. 2019;10:1135. doi:10.3389/fpls.2019.01135.
  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 2016;38(4):102. doi:10.1007/s11738-016-2113-y.
  • Janská A, Maršík P, Zelenková S, Ovesná J. Cold stress and acclimation–what is important for metabolic adjustment?[J]. Plant biol. 2010;12(3):395–405. doi:10.1111/j.1438-8677.2009.00299.x.
  • Yuan P, Yang T, Poovaiah BW. Calcium signaling-mediated Plant response to cold stress. Int J Mol Sci. 2018;19:3896. doi:10.3390/ijms19123896.
  • Liu Y, Dang P, Liu L, He C. Cold acclimation by the CBF–COR pathway in a changing climate: lessons from Arabidopsis thaliana. Plant Cell Rep. 2019;38(5):511–519. doi:10.1007/s00299-019-02376-3.
  • Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci. 2018;23(7):623–637. doi:10.1016/j.tplants.2018.04.002.
  • Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu J-K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 2016;171(4):2744–2759. doi:10.1104/pp.16.00533.
  • Adhikari L, Baral R, Paudel D, Min D, Makaju O, Poudel P, Acharya P, Missaoui A. Cold stress in plants: strategies to improve cold tolerance in forage species. Plant Stress. 2022;4:100081. doi:10.1016/j.stress.2022.100081.
  • Raza A, Charagh S, Najafi-Kakavand S, Abbas S, Shoaib Y, Anwar S, Sharifi S, Lu G, Siddique M. Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. Plant Stress. 2023;8:100152. doi:10.1016/j.stress.2023.100152.
  • Zhang Y, Cao Y, Zheng H, Feng W, Qu J, Fu F, Li W, Yu H. Ectopic expression of antifreeze protein gene from ammopiptanthus nanus confers chilling tolerance in maize. Crop J. 2021;9(4):924–933. doi:10.1016/j.cj.2020.08.011.
  • Primo-Capella A, Martínez-Cuenca M-R, Forner-Giner MÁ. Cold stress in citrus: a molecular, physiological and biochemical perspective. Horticulturae. 2021;7(10):340. doi:10.3390/horticulturae7100340.
  • Xu C, Yang Z, Yang S, Wang L, Wang M. High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress. Photosynthetica. 2020b;58(1):146–155. doi:10.32615/ps.2019.168.
  • Budiarto R, Poerwanto R, Santosa E, Efendi D, Agusta A. Comparative and correlation analysis of young and Mature Kaffir Lime (Citrus Hystrix DC) leaf characteristics. Int J Plant Biol. 2022;13(3):270–280. doi:10.3390/ijpb13030023.
  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant haberlea rhodopensis. BBA-Bioenergetics. 2010;1797(6–7):1313–1326. doi:10.1016/j.bbabio.2010.03.008.
  • He Z, Zhao T, Yin Z, Liu J, Cheng Y, Xu J. The phytochrome-interacting transcription factor CsPIF8 contributes to cold tolerance in citrus by regulating superoxide dismutase expression. Plant Sci. 2020;298:110584. doi:10.1016/j.plantsci.2020.110584.
  • Xu C, Wang M, Yang Z, Zheng Q. Low temperature and low irradiation induced irreversible damage of strawberry seedlings. Photosynthetica. 2020a;58(1):156–164. doi:10.32615/ps.2020.001.
  • Mohammadrezakhani S, Hajilou J, Rezanejad F, Zaare-Nahandi F. Assessment of exogenous application of proline on antioxidant compounds in three citrus species under low temperature stress. J Plant Interact. 2019;14(1):347–358. doi:10.1080/17429145.2019.1629033.
  • Jahan MS, Guo S, Sun J, Shu S, Wang Y, Abou El-Yazied A, Alabdallah NM, Hikal M, Mohamed MH, Ibrahim MF. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiol. 2021;167(167):309–320. doi:10.1016/j.plaphy.2021.08.002.
  • Xiong H, Ma H, Zhao H, Yang L, Hu B, Wang J, Shi X, Zhang Y, Rennenberg H, Street N. Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. Tree Physiol. 2022;42(8):1628–1645. doi:10.1093/treephys/tpac024.
  • Agarwal S, Sairam RK, Srivastava GC, Meena RC. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plantarum. 2005;49(4):541–550. doi:10.1007/s10535-005-0048-z.
  • Hoober JK, Eggink LL, Chen M. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth Res. 2007;94(2–3):387–400. doi:10.1007/s11120-007-9181-1.
  • Ashraf M, Harris PJ. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51(2):163–190. doi:10.1007/s11099-013-0021-6.
  • Amin B, Atif MJ, Meng H, Ghani MI, Ali M, Wang X, Ding Y, Li X, Cheng Z. Biochemical and physiological responses of Cucumis sativus cultivars to different combinations of low-temperature and high humidity. J Plant Growth Regul. 2023;42(1):390–406. doi:10.1007/s00344-021-10556-3.
  • Cai B, Ning Y, Li Q, Li Q, Ai X. Effects of the chloroplast fructose-1, 6-bisphosphate aldolase gene on growth and low-temperature tolerance of tomato. Int J Mol Sci. 2022;23(2):728. doi:10.3390/ijms23020728.
  • Daems S, Ceusters N, Valcke R, Ceusters J. Effects of chilling on the photosynthetic performance of the CAM orchid phalaenopsis. Front Plant Sci. 2022;13. doi:10.3389/fpls.2022.981581.
  • Chen X, Zhang X, Chen H, Xu X. Physiology and proteomics reveal fulvic acid mitigates cadmium adverse effects on growth and photosynthetic properties of lettuce. Plant Sci. 2022;323:111418. doi:10.1016/j.plantsci.2022.111418.
  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res. 2014;122(2):121–158. doi:10.1007/s11120-014-0024-6.
  • Faseela P, Sinisha A, Brestič M, Puthur J. Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica. 2019;57:108–115. doi:10.32615/ps.2019.147.
  • Tóth SZ, Schansker G, Strasser RJ. A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res. 2007;93(1–3):193–203. doi:10.1007/s11120-007-9179-8.
  • Rodriguez AA, Vilas JM, Sartore GD, Bezus R, Colazo J, Maiale SJ. Field and genetic evidence support the photosynthetic performance index (PIABS) as an indicator of rice grain yield. bioRxiv. 2023; 2023.2002. 2008.527648. doi:10.1101/2023.02.08.527648.
  • Mihaljević I, Viljevac Vuletić M, Tomaš V, Horvat D, Zdunić Z, Vuković D. PSII photochemistry responses to drought stress in autochthonous and modern sweet cherry cultivars. Photosynthetica. 2021;59(4):517–528. doi:10.32615/ps.2021.045.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul. 2020;39(2):509–531. doi:10.1007/s00344-019-10018-x.
  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol. 2007;54(1):39–50. doi:10.18388/abp.2007_3267.
  • Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 2017;524(524):13–30. doi:10.1016/j.ab.2016.10.021.
  • Ruelland E, Vaultier MN, Zachowski A, Hurry V. Cold signalling and cold acclimation in plants. Adv Bot Res. 2009;49:35–150. doi:10.1016/S0065-2296(08)00602-2.
  • Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci. 2022;13:961872. doi:10.3389/fpls.2022.961872.
  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant. 2009;31(3):427–436. doi:10.1007/s11738-009-0275-6.
  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930. doi:10.1016/j.plaphy.2010.08.016.