908
Views
0
CrossRef citations to date
0
Altmetric
Review

Biosynthetic pathways and related genes regulation of bioactive ingredients in mulberry leaves

ORCID Icon, , , , , & ORCID Icon show all
Article: 2287881 | Received 07 Oct 2023, Accepted 19 Nov 2023, Published online: 28 Nov 2023

References

  • Chen C, Mohamad Razali UH, Saikim FH, Mahyudin A, Mohd Noor NQI. Morus alba L. plant: bioactive compounds and potential as a functional food ingredient. Foods. 2021;10(3):689. doi:10.3390/foods10030689.
  • Srivastava S, Kapoor R, Thathola A, Srivastava RP. Mulberry (Morus alba) leaves as human food: a new dimension of sericulture. Int J Food Sci Nutr. 2003;54(6):411–11. doi:10.1080/09637480310001622288.
  • Vidyashree S, Ramakrishna N, Jyoti B, DV N, Bharathi VP. Natural alkaloid DNJ in mulberry and its application: an overview. J Pharmacogn Phytochem. 2020;9:1646–1654.
  • Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138(4):2099–2107. doi:10.1016/j.foodchem.2012.11.139.
  • Chen J, Li X. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice. Asia Pac J Clin Nutr. 2007;16 Suppl 1:290–294.
  • Hunyadi A, Martins A, Hsieh T-J, Seres A, Zupkó I, Wagner B. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE. 2012;7(11):e50619. doi:10.1371/journal.pone.0050619.
  • Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K, Yamane Y. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem. 2006;97(1):25–31. doi:10.1016/j.foodchem.2005.03.019.
  • Lin Z, Gan T, Huang Y, Bao L, Liu S, Cui X, Wang H, Jiao F, Zhang M, Su C, et al. Anti-inflammatory activity of mulberry leaf flavonoids in vitro and in vivo. Int J Mol Sci. 2022;23(14):7694. doi:10.3390/ijms23147694.
  • Park E, Lee S-M, Eun Lee J, Kim J-H. Anti-inflammatory activity of mulberry leaf extract through inhibition of NF-κB. J Funct Foods. 2013;5(1):178–186. doi:10.1016/j.jff.2012.10.002.
  • Srivastava S, Kapoor R, Thathola A, Srivastava RP. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int J Food Sci Nutr. 2006;57(5–6):305–313. doi:10.1080/09637480600801837.
  • Wan J, Cheng S, Wang Y, Wen C, Wei Y, Wang D, Ouyang Z. Systematic analysis of bioactive components of distinct medicinal organs of mulberry by high-performance liquid chromatography with electrospray ionization mass spectrometry and molecular docking. Pharmacogn Mag. 2021;17:428–437.
  • Wang G-Q, Zhu L, Ma M-L, Chen X-C, Gao Y, Yu T-Y, Yang G-S, Pang W-J. Mulberry 1-deoxynojirimycin inhibits adipogenesis by repression of the ERK/PPARγ signaling pathway in porcine intramuscular adipocytes. J Agr Food Chem. 2015;63(27):6212–6220. doi:10.1021/acs.jafc.5b01680.
  • Chan EW-C, Lye P-Y, Wong S-K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med. 2016;14(1):17–30. doi:10.3724/SP.J.1009.2016.00017.
  • Gryn-Rynko A, Bazylak G, Olszewska-Slonina D. New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves. Biomed Pharmacother. 2016;84:628–636. doi:10.1016/j.biopha.2016.09.081.
  • Hao J, Gao Y, Xue J, Yang Y, Yin J, Wu T, Zhang M. Phytochemicals, pharmacological effects and molecular mechanisms of mulberry. Foods. 2022;11(8):1170. doi:10.3390/foods11081170.
  • Ma G, Chai X, Hou G, Zhao F, Meng Q. Phytochemistry, bioactivities and future prospects of mulberry leaves: a review. Food Chem. 2022;372:131335. doi:10.1016/j.foodchem.2021.131335.
  • Singh R, Bagachil A, Semwall A, Kaur S, Bharadwaj A. Traditional uses, phytochemistry and pharmacology of Morus alba Linn.: a review. J Med Plants Res. 2013;7:461–469.
  • Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Sci. 2010;330(6000):70–74. doi:10.1126/science.1191652.
  • Luo X, Reiter MA, d’Espaux L, Wong J, Denby CM, Lechner A, Zhang Y, Grzybowski AT, Harth S, Lin W, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature. 2019;567(7746):123–126. doi:10.1038/s41586-019-0978-9.
  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440(7086):940–943. doi:10.1038/nature04640.
  • Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc. 2012;134(6):3234–3241. doi:10.1021/ja2114486.
  • Parida IS, Takasu S, Nakagawa K. A comprehensive review on the production, pharmacokinetics and health benefits of mulberry leaf iminosugars: main focus on 1-deoxynojirimycin, D-fagomine, and 2-O-ɑ-D-galactopyranosyl-DNJ. Crit Rev Food Sci Nutr. 2023;63(19):3468–3496. doi:10.1080/10408398.2021.1989660.
  • Nishikawa T, Ishida N. A new antibiotic R-468 active against drug-resistant shigella. J Antibiot (Tokyo). 1965;18:132–133.
  • Inouye S, Tsuruoka T, Nida T. The structure of nojirimycin, a piperidinose sugar antibiotic. J Antibiot (Tokyo). 1966;19:288–292.
  • Paulsen H, Sangster I, Heyns K. Monosaccharide mit stickstoffhaltigem Ring, XIII. Synthese und reaktionen von keto-piperidinosen. Chem Ber. 1967;100(3):802–815. doi:10.1002/cber.19671000314.
  • Yagi M, Kouno T, Aoyagi Y, Murai H. The structure of moranoline, a piperidine alkaloid from Morus species. Bull Agric Chem Soci Japan. 1976;50(11):571–572. doi:10.1271/nogeikagaku1924.50.11_571.
  • Ezure Y, Maruo S, Miyazaki K, Kawamata M. Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric Biol Chem. 1985;49(4):1119–1125. doi:10.1080/00021369.1985.10866866.
  • Asano N, Kato A, Miyauchi M, Kizu H, Kameda Y, Watson AA, Nash RJ, Fleet GW. Nitrogen-containing furanose and pyranose analogues from Hyacinthus orientalis. J Nat Prod. 1998;61(5):625–628. doi:10.1021/np9705726.
  • Kim HS, Kim YH, Hong YS, Paek NS, Lee HS, Kim TH, Kim KW, Lee JJ. Alpha-glucosidase inhibitors from Commelina communis. Planta Med. 1999;65(5):437–439. doi:10.1055/s-2006-960803.
  • Asano N, Oseki K, Tomioka E, Kizu H, Matsui K. N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr Res. 1994a;259(2):243–255. doi:10.1016/0008-6215(94)84060-1.
  • Asano N, Tomioka E, Kizu H, Matsui K. Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydr Res. 1994b;253:235–245. doi:10.1016/0008-6215(94)80068-5.
  • Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS. Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (bombyx mori L.). J Agr Food Chem. 2001;49(9):4208–4213. doi:10.1021/jf010567e.
  • Robinson R. LXXV.—A theory of the mechanism of the phytochemical synthesis of certain alkaloids. J Chem Soc Trans. 1917;111(0):876–899. doi:10.1039/CT9171100876.
  • Asano N, Nishida M, Miyauchi M, Ikeda K, Yamamoto M, Kizu H, Kameda Y, Watson AA, Nash RJ, Fleet GWJ. Polyhydroxylated pyrrolidine and piperidine alkaloids from Adenophora triphylla var japonica(Campanulaceae). Phytochemistry. 2000;53(3):379–382. doi:10.1016/S0031-9422(99)00555-5.
  • Hu X-Q, Jiang L, Zhang J-G, Deng W, Wang H-L, Wei Z-J. Quantitative determination of 1-deoxynojirimycin in mulberry leaves from 132 varieties. Ind Crops Prod. 2013;49:782–784. doi:10.1016/j.indcrop.2013.06.030.
  • Bhattacharjee JK. Alpha-aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol. 1985;12(2):131–151. doi:10.3109/10408418509104427.
  • Geisler JG, Gross GG. The biosynthesis of piperine in Piper nigrum. Phytochemistry. 1990;29(2):489–492. doi:10.1016/0031-9422(90)85102-L.
  • Gupta RN, Spenser ID. The biosynthesis of sedamine. Can J Chem. 1967;45(11):1275–1285. doi:10.1139/v67-208.
  • Keogh MF, O’Donovan DG. Biosynthesis of lobeline. J Chem Soc C. 1970;18:2470–2472. doi:10.1039/j39700002470.
  • Hemscheidt TK, Spenser ID. Biosynthesis of N-methylpelletierine vindication of a classical biogenetic concept. J Am Chem Soc. 1990;112(17):6360–6363. doi:10.1021/ja00173a025.
  • Gale EF, Epps HM. Studies on bacterial amino-acid decarboxylases: 1. l(+)-lysine decarboxylase. Biochem J. 1944;38(3):232–242. doi:10.1042/bj0380232.
  • Wilce MC, Dooley DM, Freeman HC, Guss JM, Matsunami H, Mclntire WS, Ruggiero CE, Tanizawa K, Yamaguchi H. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry. 1997;36(51):16116–16133. doi:10.1021/bi971797i.
  • Wang D, Zhao L, Wang D, Liu J, Yu X, Wei Y, Ouyang Z. Transcriptome analysis and identification of key genes involved in 1-deoxynojirimycin biosynthesis of mulberry (Morus alba L.). PeerJ. 2018b;6:e5443. doi:10.7717/peerj.5443.
  • Ma B, Luo Y, Jia L, Qi X, Zeng Q, Xiang Z, He N. Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis). J Integr Plant Biol. 2014;56(9):887–901. doi:10.1111/jipb.12141.
  • Wan J, Liao Y, Liu J, Du W, Liu C, Wei Y, Ouyang Z. Screening, cloning and functional characterization of key methyltransferase genes involved in the methylation step of 1-deoxynojirimycin alkaloids biosynthesis in mulberry leaves. Planta. 2022;255(6):121. doi:10.1007/s00425-022-03901-7.
  • Liu J, Wan J, Wang D, Wen C, Wei Y, Ouyang Z. Comparative transcriptome analysis of key reductase genes involved in the 1-deoxynojirimycin biosynthetic pathway in mulberry leaves and cloning, prokaryotic expression, and functional analysis of MaSDR1 and MaSDR2. J Agr Food Chem. 2020;68(44):12345–12357. doi:10.1021/acs.jafc.0c04832.
  • Liu J, Wan J, Du W, Wang D, Wen C, Wei Y, Ouyang Z. In vivo functional verification of four related genes involved in the 1-deoxynojirimycin biosynthetic pathway in mulberry leaves. J Agr Food Chem. 2021;69(37):10989–10998. doi:10.1021/acs.jafc.1c03932.
  • Chang D, Feiten H-J, Engesser K-H, van Beilen JB, Witholt B, Li Z. Practical syntheses of N-substituted 3-hydroxyazetidines and 4-hydroxypiperidines by hydroxylation with Sphingomonas sp. HXN-200. Org Lett. 2002;4(11):1859–1862. doi:10.1021/ol025829s.
  • Giddings L-A, Liscombe DK, Hamilton JP, Childs KL, DellaPenna D, Buell CR, O’Connor SE. A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. J Biol Chem. 2011;286(19):16751–16757. doi:10.1074/jbc.M111.225383.
  • Morishige T, Tsujita T, Yamada Y, Sato F. Molecular characterization of the S-adenosyl-L-methionine: 3’-hydroxy-N-methylcoclaurine 4’-O-methyltransferase involved in isoquinoline alkaloid biosynthesis in coptis japonica. J Biol Chem. 2000;275(30):23398–23405. doi:10.1074/jbc.M002439200.
  • Qiu F, Yang C, Yuan L, Xiang D, Lan X, Chen M, Liao Z. A phenylpyruvic acid reductase is required for biosynthesis of tropane alkaloids. Org Lett. 2018;20(24):7807–7810. doi:10.1021/acs.orglett.8b03236.
  • Sun J, Morita H, Chen G, Noguchi H, Abe I. Molecular cloning and characterization of copper amine oxidase from Huperzia serrata. Bioorg Med Chem Lett. 2012;22(18):5784–5790. doi:10.1016/j.bmcl.2012.07.102.
  • Wang D, Zhao L, Jiang J, Liu J, Wang D, Yu X, Wei Y, Ouyang Z. Cloning, expression, and functional analysis of lysine decarboxylase in mulberry (Morus alba L.). Protein Expr Purif. 2018a;151:30–37. doi:10.1016/j.pep.2018.06.004.
  • Tohge T, Watanabe M, Hoefgen R, Fernie AR. The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol. 2013;48(2):123–152. doi:10.3109/10409238.2012.758083.
  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74(4):418–425. doi:10.1093/ajcn/74.4.418.
  • Yang HX, Zhu XR, Sheng LH. Research progress on exploiting and utilizing of mulberry leaves in the field of health care. Bull Sci Technol. 2003;19:72–76.
  • Dat NT, Binh PT, Quynh LTP, Van Minh C, Huong HT, Lee JJ. Cytotoxic prenylated flavonoids from Morus alba. Fitoterapia. 2010;81(8):1224–1227. doi:10.1016/j.fitote.2010.08.006.
  • Doi K, Kojima T, Makino M, Kimura Y, Fujimoto Y. Studies on the constituents of the leaves of Morus alba L. Chem Pharm Bull (Tokyo). 2001;49(2):151–153. doi:10.1248/cpb.49.151.
  • Kim SY, Gao JJ, Kang HK. Two flavonoids from the leaves of Morus alba induce differentiation of the human promyelocytic leukemia (HL-60) cell line. Biol Pharm Bull. 2000;23(4):451–455. doi:10.1248/bpb.23.451.
  • Yang Y, Gong T, Liu C, Chen R-Y. Four new 2-arylbenzofuran derivatives from leaves of Morus alba L. Chem Pharm Bull (Tokyo). 2010a;58(2):257–260. doi:10.1248/cpb.58.257.
  • Yang Y, Zhang T, Xiao L, Yang L, Chen R. Two new chalcones from leaves of Morus alba L. Fitoterapia. 2010b;81(6):614–616. doi:10.1016/j.fitote.2010.03.005.
  • Yang Z, Wang Y, Wang Y, Zhang Y. Bioassay-guided screening and isolation of α-glucosidase and tyrosinase inhibitors from leaves of Morus alba. Food Chem. 2012;131(2):617–625. doi:10.1016/j.foodchem.2011.09.040.
  • Katsube T, Yamasaki M, Shiwaku K, Ishijima T, Matsumoto I, Abe K, Yamasaki Y. Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J Sci Food Agric. 2010;90(14):2386–2392. doi:10.1002/jsfa.4096.
  • Kim G-N, Jang H-D. Flavonol content in the water extract of the mulberry (Morus alba L.) leaf and their antioxidant capacities. J Food Sci. 2011;76(6):C869–C873. doi:10.1111/j.1750-3841.2011.02262.x.
  • Almeida JRM, D’Amico E, Preuss A, Carbone F, de Vos CHR, Deiml B, Mourgues F, Perrotta G, Fischer TC, Bovy AG, et al. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria x ananassa). Arch Biochem Biophys. 2007;465(1):61–71. doi:10.1016/j.abb.2007.04.040.
  • Kleindt CK, Stracke R, Mehrtens F, Weisshaar B. Expression analysis of flavonoid biosynthesis genes during Arabidopsis thaliana silique and seed development with a primary focus on the proanthocyanidin biosynthetic pathway. BMC Res Notes. 2010;3(1):255. doi:10.1186/1756-0500-3-255.
  • Tohge T, Wendenburg R, Ishihara H, Nakabayashi R, Watanabe M, Sulpice R, Hoefgen R, Takayama H, Saito K, Stitt M, et al. Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nat Commun. 2016;7(1):12399. doi:10.1038/ncomms12399.
  • Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–493. doi:10.1104/pp.126.2.485.
  • He N, Zhang C, Qi X, Zhao S, Tao Y, Yang G, Lee T-H, Wang X, Cai Q, Li D, et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun. 2013;4(1):2445. doi:10.1038/ncomms3445.
  • Liu R, Xu S, Li J, Hu Y, Lin Z. Expression profile of a PAL gene from Astragalus membranaceus var. Mongholicus and its crucial role in flux into flavonoid biosynthesis. Plant Cell Rep. 2006;25(7):705–710. doi:10.1007/s00299-005-0072-7.
  • Koes RE, Quattrocchio F, Mol JNM. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays. 1994;16(2):123–132. doi:10.1002/bies.950160209.
  • Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, Bowman JL, Schwinn KE. The evolution of flavonoid biosynthesis: a bryophyte perspective. Front Plant Sci. 2020;11:7. doi:10.3389/fpls.2020.00007.
  • Sugiyama M, Katsube T, Koyama A, Itamura H. Varietal differences in the flavonol content of mulberry (Morus spp.) leaves and genetic analysis of quercetin 3-(6-malonylglucoside) for component breeding. J Agr Food Chem. 2013;61(38):9140–9147. doi:10.1021/jf403136w.
  • Zhao S, Park CH, Li X, Kim YB, Yang J, Sung GB, Park NI, Kim S, Park SU. Accumulation of rutin and betulinic acid and expression of phenylpropanoid and triterpenoid biosynthetic genes in mulberry (Morus alba L.). J Agr Food Chem. 2015;63(38):8622–8630. doi:10.1021/acs.jafc.5b03221.
  • Li D, Chen G, Ma B, Zhong C, He N. Metabolic profiling and transcriptome analysis of mulberry leaves provide insights into flavonoid biosynthesis. J Agr Food Chem. 2020;68(5):1494–1504. doi:10.1021/acs.jafc.9b06931.
  • Memon AA, Memon N, Luthria DL, Bhanger MI, Pitafi AA. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Polish J Food Nutr Sci. 2010;60:25–32.
  • Chan EW-C, Wong S-K, Tangah J, Inoue T, Chan H-T. Phenolic constituents and anticancer properties of Morus alba (white mulberry) leaves. J Integr Med. 2020;18(3):189–195. doi:10.1016/j.joim.2020.02.006.
  • Sánchez-Salcedo EM, Tassotti M, Del Rio D, Hernández F, Martínez JJ, Mena P. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC-MS approach. Food Chem. 2016;212:250–255. doi:10.1016/j.foodchem.2016.05.121.
  • Herrmann KM. The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell. 1995;7(7):907–919. doi:10.2307/3870046.
  • Zhao L, Wang D, Liu J, Yu X, Wang R, Wei Y, Wen C, Ouyang Z. Transcriptomic analysis of key genes involved in chlorogenic acid biosynthetic pathway and characterization of MaHCT from Morus alba L. Protein Expr Purif. 2019;156:25–35. doi:10.1016/j.pep.2018.12.006.
  • Jeong JY, Jo YH, Kim SB, Liu Q, Lee JW, Mo EJ, Lee KY, Hwang BY, Lee MK. Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorg Med Chem Lett. 2015;25(11):2269–2274. doi:10.1016/j.bmcl.2015.04.045.
  • Li HX, Park JU, Su XD, Kim KT, Kang JS, Kim YR, Kim YH, Yang SY. Identification of anti-melanogenesis constituents from Morus alba L. leaves. Molecules. 2018;23(10):2559. doi:10.3390/molecules23102559.
  • Naik R, Harmalkar DS, Xu X, Jang K, Lee K. Bioactive benzofuran derivatives: moracins A-Z in medicinal chemistry. Eur J Med Chem. 2015;90:379–393. doi:10.1016/j.ejmech.2014.11.047.
  • Liu S, Zhong Z, Sun Z, Tian J, Sulaiman K, Shawky E, Fu H, Zhu W. De novo Transcriptome analysis revealed the putative pathway genes involved in biosynthesis of moracins in Morus alba L. ACS Omega. 2022;7(13):11343–11352. doi:10.1021/acsomega.2c00409.