644
Views
0
CrossRef citations to date
0
Altmetric
Review

Pure biochemicals and nanomaterials as next generation biostimulants for sustainable agriculture under abiotic stress – recent advances and future scope

, , &
Article: 2290336 | Received 26 Sep 2023, Accepted 13 Oct 2023, Published online: 04 Dec 2023

References

  • Rouphael Y, Colla G. Toward a sustainable agriculture through plant biostimulants: from experimental data to practical applications. Agronom. 2020;10(10):1461. doi:10.3390/agronomy10101461.
  • Garcia-Garcia AL, Garcia-Machado FJ, Borges AA, Morles-Sierra S, Boto A, Jimenez-Arias D. Pure organic active compounds against abiotic stress: a biostimulant overview. Front Plant Sci. 2020;11:575829. doi:10.3389/fpls.2020.575829.
  • European Biostimulants Industry Council [EBIC]. 2020 [accessed 2020 Feb 5].
  • du Jardin P. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic (Amsterdam). 2015;196:3–7. doi:10.1016/j.scienta.2015.09.021.
  • Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy. 2019;9(6):306. doi:10.3390/agronomy9060306.
  • du Jardin P, Geelen D. Agricultural functions and action mechanisms of plant biostimulants (PBs). In: Geelen D Xu L, editors. The chemical biology of plant biostimulants. Wiley Online Books; 2020. pp. 1–30. doi:10.1002/9781119357254.ch1.
  • Zandonadi DB, Matos CRR, Castro RN, Spaccini R, Olivares FL, Canellas LP. Alkamides: a new class of plant growth regulators linked to humic acid bioactivity. Chem Biol Technol Agric. 2019;6(1):23. doi:10.1186/s40538-019-0161-4.
  • Abdelaal KAA, El-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, El-Esawi M, Elkelish A. Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronom. 2020;10(1):26. doi:10.3390/agronomy10010026.
  • Alfosea-Simon M, Zavala-Gonzalez EA, Camara-Zapata JM, Martinez-Nicolas JJ, Simon I, Simon-Grao S, García-Sánchez F. Effect of foliar application of amino acids on the salinity tolerance of tomato plants cultivated under hydroponic system. Sci Hortic (Amsterdam). 2020;272:109509. doi:10.1016/j.scienta.2020.109509.
  • Merwad AR, Desoky ESM, Rady MM. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci Hortic (Amsterdam). 2018;228:132–144. doi:10.1016/J.scienta.2017.10008.
  • Akram NA, Umm-E-Hani M, Sadiq M, Ashraf M, Sadiq M. Exogenous application of L-methionine mitigates the drought-induced oddities in biochemical and anatomical responses of bitter gourd (momordica charantia L.). Sci Hortic. 2020;267:109333. doi:10.1016/j.scienta.2020.109333.
  • Teixeira WF, Fagan FB, Soares LH, Umburanas RC, Reichardt K, Neto DD. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front Plant Sci. 2017;8:327. doi:10.3389/fpls.2017.00327.
  • La VH, Lee BR, Islam MT, Al Mamun M, Park SH, Bae DW, Kim T-H. Characterization of glutamate-mediated hormonal regulatory pathway of the drought responses in relation to proline metabolism in Brassica napus L. Plants 2020. 2020;9(4):512. doi:10.3390/plants9040512.
  • Nasibi F, Yaghoobi MM, Kalantari KM. Effect of exogenous arginine on alleviation of oxidative damage in tomato plant underwater stress. J Plant Interact. 2011;6(4):291–296. doi:10.1080/17429145.2010.539708.
  • Abid G, Ouertani RN, Jebara SH, Boubakri H, Muhovski Y, Ghouili E, Abdelkarim S, Chaieb O, Hidri Y, Kadri S, et al. Alleviation of drought stress in faba bean (Vicia faba L.) by exogenous application of β-aminobutyric acid (BABA). Physiol Mol Biol Plants. 2020;26(6):1173–1186. doi:10.1007/s12298-020-00796-0.
  • Arslan E, Agar G, Aydin M. Putrescine as a protective molecule on DNA damage and DNA methylation changes in wheat under drought. Commun Fac Sci Univ Ankara Ser C Biol. 2019;28:170–187.
  • Zhu X, Wang L, Yang R, Han Y, Hao J, Liu C, et al. Effects of exogenous putrescine on the ultrastructure of and calcium ion flow rate in lettuce leaf epidermal cells under drought stress. Hortic Environ Biotechnol. 2019;60:479–490. doi:10.1007/s13580-019-00151-7.
  • Esfandiari Ghalati R, Shamili M, Homaei A. Effect of putrescine on biochemical and physiological characteristics of guava (Psidium guajava L.) seedlings under salt stress. Sci Hortic (Amsterdam). 2020;261:108961. doi:10.1016/j.scienta.2019.108961.
  • Kim TE, Kim SK, Han TJ, Lee JS, Chang SC. ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol Plant. 2002;115(3):370–376. doi:10.1034/j.1399-3054.2002.1150306.x.
  • Hassan N, Ebeed H, Aljaarany A. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol Mol Biol Plants. 2020;26(2):233–245. doi:10.1007/s12298-019-00744-7.
  • Ahanger MA, Qin C, Maodong Q, Dong XX, Ahmad P, Abd Allah EF, Zhang L. Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiol Biochem. 2019;144:1–13. doi:10.1016/j.plaphy.2019.09.021.
  • Li G, Liang Z, Li Y, Liao Y, Liu Y. Exogenous spermidine regulates starch synthesis and the antioxidant system to promote wheat grain filling under drought stress. Acta Physiol Plant. 2020;42(7):110. doi:10.1007/s11738-020-03100-5.
  • Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine catabolism in plants: a universal process with diverse functions. Front Plant Sci. 2019;10:561. doi:10.3389/fpls.2019.00561.
  • Rabêlo VM, Magalhães PC, Bressanin LA, Carvalho DT, dos Reis CO, Karam D, Doriguetto AC, Santos MHD, Santos Filho PRDS, Souza TCD. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci Rep. 2019;9(1):8164. doi:10.1038/s41598-019-44649-7.
  • Hafez Y, Attia K, Alamery S, Ghazy A, Al-Doss A, Ibrahim E, Rashwan E, El-Maghraby L, Awad A, Abdelaal K, et al. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy. 2020;10(5):630. doi:10.3390/agronomy10050630.
  • Li J, Wang X, Lin X, Yan G, Liu L, Zheng H, Zhao B, Tang J, Guo Y-D. Alginate-derived oligosaccharides promote water stress tolerance in cucumber (Cucumis sativus L.). Plant Physiol Biochem. 2018;130:80–88. doi:10.1016/J.PLAPHY.2018.06.040.
  • Naamala J, Smith DL. Relevance of plant growth promoting microorganisms and their derived compounds in the face of climate change. Agronom. 2020;10(8):1179. doi:10.3390/agronomy10081179.
  • Sharma A, Kapoor D, Wang J, Landi M, Zheng B, Yan D, Yuan H. Nitric oxide mediated mechanisms adopted by plants to cope with salinity. Biol Plant. 2020;64:512–518. doi:10.32615/bp.2020.070.
  • Kumari A, Kapoor R, Bhatla SC. Nitric oxide and light co-regulate glycine betaine homeostasis in sunflower seedling cotyledons by modulating betaine aldehyde dehydrogenase transcript levels and activity. Plant Signal Behav. 2019;14:e1666656. doi:10.1080/15592324.2019.1666656.
  • Keisham M, Jain P, Singh N, von Toerne C, Bhatla SC, Lindermayr C. Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide. 2019;88:10–26. doi:10.1016/j.niox.2019.03.008.
  • Singh N, Bhatla SC. Signaling through reactive oxygen and nitrogen species is differentially modulated in sunflower seedling root and cotyledon in response to various nitric oxide donors and scavengers. Plant Signal Behav. 2017;12(9):e1365214. doi:10.1080/15592324.20171365214.
  • Bhatla R, Gogna M, Aggarwal R, Bhat V. Possible interaction of water-soluble vitamins with nitric oxide and its significance-evidence from reversed phase-high pressure liquid chromatography (RP-HPLC). Intl J Innovative Res Technol. 2022;9:547–557.
  • Bhatla SC, Lal MA. Plant physiology, development and metabolism. 2nd ed. Singapore: Springer Nature; 2023.
  • Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant. 2016;38(2):48. doi:10.1007/s11738-015-2045-y.
  • Xia H, Ni Z, Hu R, Lin L, Deng H, Wang J, Tang Y, Sun G, Wang X, Li H, et al. Melatonin alleviates drought stress by a non-enzymatic and enzymatic antioxidative system in kiwifruit seedlings. Int J Mol Sci. 2020;21(3):852. doi:10.3390/ijms21030852.
  • Zhang T, Shi Z, Zhang X, Zheng S, Wang J, Mo J. Alleviating effects of exogenous melatonin on salt stress in cucumber. Sci Hortic (Amsterdam). 2020;262:109070. doi:10.1016/j.scienta.2019.109070.
  • Zahedi SM, Hosseini MS, Abadía J, Marjani M. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (fragaria × ananassa Duch.). Plant Physiol Biochem. 2020;149:313–323. doi:10.1016/j.plaphy.2020.02.021.
  • Wang SY, Shi XC, Wang R, Wang HL, Liu F, Laborda P. Melatonin in fruit production and postharvest preservation: a review. Food Chem. 2020;320:126642. doi:10.1016/j.foodchem.2020.126642.
  • Kaur H, Bhatla SC. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide. 2016;59:42–53. doi:10.1016/j.niox.2016.07.001.
  • Arora D, Bhatla SC. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and mn SOD. Free radic. Biol Med. 2017;106:315–328. doi:10.1016/j.freeradbiomed.2017.02.042.
  • Singh N, Jain P, Gupta S, Khurana JM, Bhatla SC. N-nitrosomelatonin, an efficient nitric oxide donor and transporter in Arabidopsis seedlings. Nitric Oxide. 2021;113-114:50–56. doi:10.1016/j.niox.2021.05.001.
  • Kaur H, Bhatla SC. Melatonin–nitric oxide interaction modulates catalase activity and hydrogen peroxide homeostasis in sunflower seedling cotyledons accompanying NaCl stress. J Plant Growth Regul. 2022;42(10):6261–6272. doi:10.1007/s00344-022-10817-9.
  • Mphande W, Kettlewell PS, Grove IG, Farrell AD. The potential of antitranspirants in drought management of arable crops: a review. Agric Water Management. 2020;236:106143. doi:10.1016/j.agwat.2020.106143.
  • Juarez_maldonado OOH, Morales-Diaz A, Morales-Díaz AB, González-Morales S, Morelos-Moreno Á, Cabrera-De la Fuente M, Sandoval-Rangel A, Cadenas-Pliego G, Benavides-Mendoza A. Nanoparticles and nanomaterials as plant biostimulants. Intl J Molec Sci. 2019;20(1):162. doi:10.3390/ijms20010162.
  • Bhatla R. Nanourea – an Eco-friendly Nitrogen Fertiliser. Int J Ecol Environ Sci. 2022;48(5):541–546. doi:10.55863/ijees.2022.0541.